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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

Fractional dissipation case

We consider the Cauchy problem of 2D fractional diffusion

Boussinesq equations for an incompressible fluid flows in R2

∂u

∂t
+ (u · ∇)u + ν(−∆)αu +∇P = θe2,

∂θ

∂t
+ (u · ∇)θ + κ(−∆)βθ = 0,

div u = 0, (t, x) ∈ R+ × R2,

u(x , 0) = u0(x), θ(x , 0) = θ0(x).

(1)

where α, β ∈ (0, 1), and (−∆)α is the pseudodifferential operator

defined via the Fourier transform

̂(−∆)αv(ξ) = |ξ|2αv̂(ξ).

In the following, for simplicity, we denote

Λ = (−∆)1/2.
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

Fractional dissipation case

Theorem 3.4 (Global well-posedness; Xiaojing Xu 2010)

Let ν > 0, κ > 0 be fixed, α ∈
[

1
2 , 1
)
, β ∈

(
0, 1

2

]
, α + β = 1, and

div u0 = 0. Let m > 2 be an integer, and (u0, θ0) ∈ Hm
(
R2
)
.

Then, there exists a unique solution (u, θ) to the Cauchy problem
(1) such that

θ ∈ C ([0,∞);Hm(R2)) ∩ L2(0,∞;Hm+β(R2)),

and
u ∈ C ([0,∞);Hm(R2)) ∩ L2(0,∞;Hm+α(R2)).

Remark 1.1. For simplicity of the exposition, we formulate and

prove Theorem 3.4 in the subcritical case α + β = 1, only. One

can easily verify that, by arguments from this work, we can obtain

an analogous result for 1 ≤ α + β ≤ 2.
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Fractional dissipation case

Lemma 3.1 (Positive Inequality)

Let 0 ≤ α ≤ 2. For every p > 1, we have∫
Rn

(Λαw) |w |p−2w dx ≥ C (p)

∫
Rn

(
Λ
α
2 |w |

p
2

)2
dx , (2)

for all w ∈ Lp (Rn) such that Λαw ∈ Lp (Rn), where

C (p) = 4(p−1)
p2 .

Remark: This inequality is well-known in the theory of

sub-Markovian operators e.g.

• V.A. Liskevich, Yu.A. Semenov, Some problems on Markov

semigroups, Schrödinger operators, Markov semigroups, wavelet

analysis, operator algebras, Akademie Verlag, Berlin, 1996.

Observe that if α = 2, integrating by parts we obtain (2) with the

equality.
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Fractional dissipation case

Theorem 3.5 (Blow-up Criterion; Xiaojing Xu 2010)

Let α, β ∈ [0, 2], ν ≥ 0, κ ≥ 0. Suppose (u0, θ0) ∈ Hm(R2)
with m > 2 being an integer. Then, there exists a unique lo-
cal classical solution (u, θ) ∈ C ([0,T );Hm(R2)) of problem (1)
for some T = T (‖u0‖Hm(R2), ‖θ0‖Hm(R2)). Moreover, the solu-

tion remains in Hm
(
R2
)

up to a time T1 > T , namely (u, θ) ∈
C
(
[0,T1] ;Hm

(
R2
))

if and only if∫ T

0
‖∇θ(τ)‖L∞dτ <∞. (3)
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Fractional dissipation case

• In the inviscid case ν = 0 and κ = 0, Blow up Criterion was proved

in Chae1997. The arguments from that works with minor changes

also for problem (1) with the fractional diffusion, due to inequality

(2). By this reason, we skip details of the proof of Theorem 3.5.

• In order to prove Theorem 3.4, it suffices to show that (3) holds

true for the smooth solutions (u, θ) to the Cauchy problem (1).

• In the following section, we first show some a priori estimates for

a smooth solution (u, θ) ∈ C ([0,T );Hm(R2)) with m > 2 to (1),

then prove that (3) is valid.
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Fractional dissipation case

For simplicity, let ν = κ = 1.

• Estimate of ‖θ‖L∞(0,∞; Lp(R2)).

Let p ≥ 2. Multiplying the second equation in (1) by |θ|p−2θ and

integrating over R2, we deduce that

1

p

d

dt
‖θ(t)‖pLp +

∫ t

0
(−∆)βθ|θ|p−2θdx = 0,

where we have used the divergence free condition. This identity

together with Lemma 3.1, allows us to get

‖θ(t)‖pLp + C (p)

∫ t

0
‖Λβ|θ|

p
2 (τ)‖2

L2 dτ ≤ ‖θ0‖pLp .

In particular, when p = 2, we have

‖θ(t)‖2
L2 +

∫ t

0
‖Λβθ(τ)‖2

L2 dτ ≤ ‖θ0‖2
L2 . (4)
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Fractional dissipation case

• Estimate of ‖u‖L∞(0,∞;L2(R2)).

Multiplying the first equation of (1) by u, and integrating it over

R2, we have

1

2

d

dt
‖u(t)‖2

L2 +

∫
R2

u(−∆)αu dx =

∫
R2

θe2|u|2 dx −
∫
R2

(u · ∇)|u|2 dx

−
∫
R2

∇Pu dx .

This identity together with inequality (2) and the divergence free

condition, yield that

1

2

d

dt
‖u(t)‖2

L2 +

∫
R2

|Λαu|2 dx =

∫
R2

θe2u dx ≤ ‖θ(t)‖L2‖u(t)‖L2 .

By (4) and the Hölder inequality, we deduce that

‖u(t)‖2
L2 + 4

∫ t

0
‖Λαu(τ)‖2

L2 dτ ≤ 4 ‖θ0‖2
L2 T 2 + 2 ‖u0‖2

L2 .
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Fractional dissipation case

• Estimate of ‖ω(t)‖L∞(0,∞;L2(R2)).

Taking the operation curl on both sides of the first equation in (1)

and denoting ω = curl u = ∂x1u2 − ∂x2u1, we get

ωt + (−∆)αω + (u · ∇)ω = −θx1 . (5)

Multiplying the above equality by ω, integrating over R2, we find

1

2

d

dt
‖ω(t)‖2

L2 + ‖Λαω‖2
L2 =

1

2

∫
R2

(u · ∇)|ω|2 dx −
∫
R2

θx1ωdx

= −
∫
R2

θx1ωdx

≤ 1

2
‖Λαω‖2

L2 +
1

2
‖Λβθ‖2

L2

Here, in the last inequality, we have used the Parseval theorem and

the relation α + β = 1.
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Fractional dissipation case

Thus, we have

d

dt
‖ω(t)‖2

L2 + ‖Λαω‖2
L2 ≤ ‖Λβθ‖2

L2 .

By virtue of estimate (4), we deduce that

‖ω(t)‖2
L2 +

∫ t

0
‖Λαω(τ)‖2

L2 dτ ≤ ‖ω0‖2
L2 +

∫ t

0
‖Λβθ(τ)‖2

L2 dτ

≤ C (‖ω0‖L2 , ‖θ0‖L2 ,T ) .
(6)
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Fractional dissipation case

• Estimate of ‖ΛαDω‖L∞(0,∞;L2(R2))

We first compute the derivative ∇ = (∂x1 , ∂x2) of both sides of (5),

and then take L2 inner product with ∇ω. After integration by parts,

we obtain

1

2

d

dt
‖∇ω(t)‖2

L2 + ‖Λα∇ω‖2
L2 = −

∫
R2

[∇(u · ∇)ω]∇ωdx −
∫
R2

∇θx1∇ωdx

= −
∫
R2

[(∇u · ∇)ω]∇ωdx −
∫
R2

∇θx1∇ωdx

≤ ‖∇u‖
L

2
1−α
‖∇ω‖L2‖∇ω‖

L
2
α

+
1

2
‖Λα∇ω‖2

L2 +
1

2
‖Λβ∇θ‖2

L2

≤ ‖∇u‖ 2
1−α
‖∇ω‖

3α−1
α

L2 ‖Λα∇ω‖
1−α
α

L2 +
1

2
‖Λα∇ω‖2

L2 +
1

2
‖Λβ∇θ‖2

L2

≤ C‖∇u‖
2α

3α−1

L
2

1−α
‖∇ω‖2

L2 +
3

4
‖Λα∇ω‖2

L2 +
1

2
‖Λβ∇θ‖2

L2

(7)

where we have used the assumptions α ≥ 1
2 and div u = 0.
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Fractional dissipation case

Next, computing the derivative ∇⊥ = (−∂x2 , ∂x1) of the second

equation from (1), we easily show that

∇⊥θt +∇⊥[(u · ∇)θ] + (−∆)β∇⊥θ = 0.

We multiply the above equality by ∇⊥θ, and integrate it over R2.

Similar arguments as those in (7) lead to

1

2

d

dt
‖∇⊥θ(t)‖2

L2 + ‖Λβ∇⊥θ‖2
L2

≤−
∫
R2

(u · ∇)∇⊥θ∇⊥θdx −
∫
R2

∇⊥θ · ∇u∇⊥θdx

=‖∇u‖
L

2
1−α
‖∇⊥θ‖L2‖∇⊥θ‖

L
2
α

≤‖∇u‖
L

2
1−α
‖∇⊥θ‖L2‖Λβ∇⊥θ‖L2

≤1

2
‖∇u‖2

L
2

1−α
‖∇⊥θ‖2

L2 +
1

2
‖Λβ∇⊥θ‖2

L2 .

(8)
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Fractional dissipation case

Now, combining (7) with (8), one can show the function

X (t) = ‖∇ω(t)‖L2 + ‖∇⊥θ(t)‖L2 .

satisfies the inequality

d

dt
X (t) ≤ C (‖∇u‖

2α
3α−1

L
2

1−α
+ ‖∇u‖2

L
2

1−α
)X (t).

Therefore, Gronwall’s inequality and the embedding inequality and

estimate (6) yield that

X (t) ≤ CX (0) exp{
∫ t

0

(‖∇u(τ)‖
2α

3α−1

L
2

1−α
+ ‖∇u(τ)‖2

L
2

1−α
)dτ}

≤ CX (0) exp{
∫ t

0

(‖Λαω(τ)‖
2α

3α−1

L2 + ‖Λαω(τ)‖2
L2 )dτ}

≤ CX (0) exp

{
T

4α−2
3α−1

(∫ t

0

‖Λαω(τ)‖2
L2 dτ

) 2α
3α−1

+

∫ t

0

‖Λαω(τ)‖2
L2 dτ

}
≤ C (T , ‖u0‖H2 , ‖θ0‖H1 ).
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Fractional dissipation case

Finally, by virtue of estimate (7), we deduce

‖∇ω(t)‖2
L2 +

∫ t

0
‖Λα∇ω(τ)‖2

L2 dτ ≤ C (T , ‖u0‖H2 , ‖θ0‖H1) .
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Fractional dissipation case

• Estimate of ‖∇θ‖L∞(0,∞;L∞(R2))

Multiplying (3.9) by
∣∣∇⊥θ∣∣p−2∇⊥θ, and integrating it over R2, we

have

1

p

d

dt
‖∇⊥θ(t)‖pLp + C (p)‖∇⊥θ‖p

L
2p

1−α
≤
∫
R2

∇⊥θ · ∇u|∇⊥θ|p−2∇⊥θdx

≤ ‖∇u‖L∞‖∇⊥θ‖pLp .

Using Gronwall’s inequality and the obvious identity ‖∇Q‖Lp =

‖∇⊥Q‖Lp , we easily show that

‖∇θ(t)‖Lp ≤ C ‖∇θ0‖Lp exp

{∫ t

0
‖∇u(τ)‖L∞dτ

}
.
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Fractional dissipation case

This inequality together with the Gagliardo-Nirenberg inequality,

allows us to obtain∫ t

0

‖∇u(τ)‖L∞dτ ≤ C

∫ t

0

‖ω(τ)‖
α

1+α

L2

∥∥∥Λ1+αω(τ)
∥∥∥ 1

1+α

L2
dτ

≤ CT
2α+1
α+1

(∫ t

0

‖ω(τ)‖2
L2 dτ

) α
1+2α

+ C

∫ t

0

∥∥∥Λ1+αω(τ)
∥∥∥2

L2
dτ

≤ C
(
T , ‖u0‖H2 , ‖θ0‖H1

)
.

Using Sobolev embedding

‖f (x)‖LP(R2) ≤ C‖f (x)‖Hs(R2), s > 1,

where C is independent of p ∈ [2,∞], then we have, for all

t ∈ [0,T ],

‖∇θ(t)‖Lp ≤ C ‖θ0‖Hm exp

{∫ t

0
‖∇u(τ)‖L∞dτ

}
≤ C ,

where C is independent of p.
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Fractional dissipation case

Passing to the limit p →∞ in above inequality, we obtain

‖∇θ(t)‖L∞ ≤ C (T , ‖u0‖H2 , ‖θ0‖Hm) , ∀t ∈ [0,T ].

This implies that condition (3) holds true, and according to The-

orem 3.5, we obtain a unique solution of (1) such that (u, θ) ∈
C
(
[0,∞);Hm

(
R2
))

. By (7), (8) and the iteration process, we con-

struct u ∈ L2
(
0,∞;Hm+α

(
R2
))

and θ ∈ L2
(
0,∞;Hm+β

(
R2
))

,

and we complete the proof of Theorem 3.4. �

18 / 82



Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

Fractional dissipation case

The Sub-critical Dissipation
with Yudovich Type Data
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Fractional dissipation case

Global well-posedness

Sub-critical Boussinesq Equations with Yudovich Initial Data
∂tu + u · ∇u + νΛαu = −∇p + θ e2,

∂tθ + u · ∇θ + Λβθ = 0,

∇ · u = 0,

u(x , 0) = u0(x), θ(x , 0) = θ0(x),

(9)

where ν ≥ 0, α ∈ (0, 1] and β ∈ (1, 2].
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Fractional dissipation case

Theorem 1 (Wu-X., 2014)

Consider (9) with either ν > 0 or ν = 0, α ∈ (0, 1] and β ∈ (1, 2].
Let q > 2

β−1 . Assume u0 satisfying ∇ · u0 = 0 and u0 ∈ L2(R2),

ω0 ≡ ∇× u0 ∈ Lq(R2) ∩ L∞(R2). Assume θ0 ∈ L2(R2) ∩ Lq(R2).
Then, there exists a unique solution (u, θ) to (9) such that, for
some r ∈ (2, q),

u ∈ Cloc([0,∞); L2 ∩ L∞), ω ∈ L∞loc(0,∞; Lq ∩ L∞),

θ ∈ C ([0,∞); L2 ∩ Lq) ∩ L2(0,∞;H
β
2 ) ∩ L1

loc(0,∞;B
1+ 2

r
r ,1 ).(10)

Furthermore, the bounds for (u, θ, ω) in the class (10) are
independent of ν even in the case when ν > 0.
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Fractional dissipation case

Lemma 1

Assume that ∇ · u = 0 and θ solves{
∂tθ + u · ∇θ + Λβθ = 0,
θ(x , 0) = θ0(x).

(11)

Let r ∈ [2,∞). Then θ obeys the estimate: for any integer j ≥ 0,

2βj‖∆jθ‖L1
tL

r ≤ C ‖θ0‖Lr
(

1 + ‖ω‖L1
tL

q + (j + 2)‖ω‖L1
tL
∞

)
. (12)
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Fractional dissipation case

Proof of Lemma. Applying ∆j to (11) and taking inner product

with ∆jθ|∆jθ|r−2, we obtain

1

r

d

dt
‖∆jθ‖rLr +

∫
∆jθ |∆jθ|r−2Λβθ dx = −

∫
∆jθ|∆jθ|r−2 ∆j(u·∇θ) dx .

(13)

The dissipative term obeys the following lower bound∫
∆jθ |∆jθ|r−2Λβθ dx ≥ C 2βj‖∆jθ‖rLr .
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Fractional dissipation case

Using the notion of para-products, we write

∆j(u · ∇θ) = J11 + J12 + J13 + J14 + J15,

where

J11 =
∑
|j−k|≤2

[∆j , Sk−1u · ∇]∆kθ,

J12 =
∑
|j−k|≤2

(Sk−1u − Sju) · ∇∆j∆kθ,

J13 = Sju · ∇∆jθ,

J14 =
∑
|j−k|≤2

∆j(∆ku · ∇Sk−1θ),

J15 =
∑

k≥j−1

∆j(∆ku · ∇∆̃kθ).
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Fractional dissipation case

Since ∇ · u = 0, we have∫
J13|∆jθ|r−2∆jθ dx = 0.

By Hölder’s inequality,∣∣∣∣∫ J11|∆jθ|r−2∆jθ dx

∣∣∣∣ ≤ ‖J11‖Lr ‖∆jθ‖r−1
Lr .

Remark: Introduce the Littlewood-Paley decomposition, we write

for each j ∈ Z

Aj =
{
ξ ∈ Rd : 2j−1 ≤ |ξ| < 2j+1

}
.

The Littlewood-Paley decomposition asserts the existence of a

sequence of functions {Φj}j∈Z ∈ S such that

suppΦ̂j ⊂ Aj , Φ̂j(ξ) = Φ̂0(2−jξ) or Φj(x) = 2jdΦ0(2jx),
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Fractional dissipation case

We write the commutator in terms of the integral,

J11 =

∫
Φj(x − y) (Sk−1u(y)− Sk−1u(x)) · ∇∆kθ(y) dy ,

where Φj is the kernel of the operator ∆j . By Young’s inequality

for convolution,

‖J11‖Lr ≤ ‖|x |Φj(x)‖L1 ‖∇Sj−1u‖L∞ ‖∇∆jθ‖Lr
≤ ‖|x |Φ0(x)‖L1 ‖∇Sj−1u‖L∞ ‖∆jθ‖Lr
= C ‖∇Sj−1u‖L∞ ‖∆jθ‖Lr ,

where we have used the definition of Φj and Bernstein’s inequality

in the second inequality above.

26 / 82



Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

Fractional dissipation case

By Bernstein’s inequality,

‖J12‖Lr ≤ C‖∆ju‖L∞‖∇∆jθ‖Lr
≤ C ‖∇∆ju‖L∞ ‖∆jθ‖Lr
≤ C ‖ω‖L∞ ‖∆jθ‖Lr ;

‖J14‖Lr ≤ C‖∆ju‖L∞‖∇Sj−1θ‖Lr
≤ C ‖∇∆ju‖L∞

∑
m≤j−2

2(m−j)‖∆mθ‖Lr

≤ C ‖ω‖L∞
∑

m≤j−2

2(m−j)‖∆mθ‖Lr ;

‖J15‖Lr ≤ C
∑

k≥j−1

2(j−k) ‖∇∆ku‖L∞‖∆kθ‖Lr

≤ C ‖ω‖L∞
∑

k≥j−1

2(j−k) ‖∆kθ‖Lr .
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Fractional dissipation case

Inserting the estimates above in (13), we have

d

dt
‖∆jθ‖Lr + C 2βj‖∆jθ‖Lr ≤ C ‖∇Sj−1u‖L∞ ‖∆jθ‖Lr

+C ‖ω‖L∞ [‖∆jθ‖Lr +
∑

m≤j−2

2(m−j)‖∆mθ‖Lr

+
∑

k≥j−1

2(j−k) ‖∆kθ‖Lr ].

Integrating in time, taking L1
t and multiplying by 2βj , we obtain

(12). This completes the proof of Lemma 1.
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Fractional dissipation case

Proof of Theorem 1

The local existence can be established through a standard

procedure. We provide the global a priori bounds needed for the

global existence. Obviously,

‖θ(t)‖L2 ≤ ‖θ0‖L2 , ‖θ(t)‖Lq ≤ ‖θ0‖Lq ,
‖u(t)‖L2 ≤ ‖u0‖L2 + t ‖θ0‖L2 .

Since ω satisfies

∂tω + u · ∇ω + νΛαω = ∂x1θ,

it is clear that, for any ν ≥ 0,

‖ω(t)‖Lq∩L∞ ≤ ‖ω0‖Lq∩L∞ +

∫ t

0
‖∂x1θ(τ)‖Lq∩L∞ dτ. (14)
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Fractional dissipation case

To obtain a global bound for ‖ω(t)‖Lq∩L∞ , we make use of the

smoothing effect in the θ-equation. By Lemma 1, for any

2 < r < q and 0 < ε < β,

sup
j≥−1

2(β−ε)j‖∆jθ‖L1
tL

r ≤ C ‖θ0‖Lr (1 + ‖ω‖L1
t (L∞∩Lq)).

Choosing 2 < r < q and 0 < ε < β such that 1 + 2
r < β − ε, we

have, by Bernstein’s inequality,

‖θ‖
L1
tB

1+ 2
r

r,1

≤ sup
j≥−1

2(β−ε)j‖∆jθ‖L1
tL

r ,

‖∇θ(τ)‖Lq∩L∞ ≤
∑
j≥−1

2j‖∆jθ‖Lq∩L∞

≤ C
∑
j≥−1

2(1+ 2
r

)j‖∆jθ‖Lr = C ‖θ‖
B

1+ 2
r

r,1

.
(15)
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Combining these estimates, we obtain

‖θ‖
L1
tB

1+ 2
r

r,1

≤ C ‖θ0‖Lr
(

1 + t‖ω0‖L∞∩Lq +

∫ t

0
‖θ‖

L1
τB

1+ 2
r

r,1

dτ

)
.

By Gronwall’s inequality, for C depending on ‖θ0‖L2∩Lq and

‖ω0‖L∞∩Lq only,

‖θ‖
L1
tB

1+ 2
r

r,1

≤ C eC t .

Consequently, by (14), ‖ω‖L∞t (L∞∩Lq) ≤ C eC t .

In addition, by Gagliardo-Nirenberg inequality,

‖u‖L∞ ≤ C ‖u‖
1
2

L2 ‖ω‖
1
2
L∞ ,

which yields the global bound for ‖u‖L∞ . This completes the proof

for the global bounds, which are independent of ν even in the case

when ν > 0.
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Next we show that any two solutions satisfying (10) must coincide.

Assume that (u1, θ1) and (u2, θ2) are two solutions of (9) and let

p1 and p2 be the associated pressures, respectively. Consider the

differences

u = u2 − u1, θ = θ2 − θ1, p = p2 − p1,

which satisfy

∂tu + u · ∇u2 + u1 · ∇u + νΛαu = −∇p + θe2,

∂tθ + u · ∇θ2 + u1 · ∇θ + Λβθ = 0.
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Taking the inner product with (u, θ) and integrating by parts lead

to
1

2

d

dt

(
‖u‖2

L2 + ‖θ‖2
L2

)
+ ν‖Λ

α
2 u‖2

L2 + ‖Λ
β
2 θ‖2

L2

≤ ‖u‖L2 ‖θ‖L2 + J1 + J2,
(16)

where

J1 = −
∫

u · ∇u2 · u dx , J2 = −
∫

u · ∇θ2 · θ dx .

For notational convenience, we let δ > 0 and write

Y 2
δ (t) = δ2 + ‖u(t)‖2

L2 + ‖θ(t)‖2
L2 .
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For any ρ ∈ [2,∞), we have

|J1| ≤ ‖u‖
2
ρ

L∞ ‖∇u2‖Lρ ‖u‖
2− 2

ρ

L2 .

Furthermore,

‖u‖L∞ ≤ ‖u1‖L∞ + ‖u2‖L∞ = L(t),

‖∇u2‖Lρ ≤ ρ sup
ρ≥2

‖∇u2‖Lρ
ρ

≤ ρM(t)

where we have used the fact that supρ≥2
‖∇u2‖Lρ

ρ is bounded due to

ω2 ∈ Lq ∩ L∞.
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Therefore, by optimizing the bound over ρ, we have

|J1| ≤ M(t) ρ

(
L(t)

Yδ

) 2
ρ

Y 2
δ ≤ 2e M(t) [log L(t)− logYδ(t)] Y 2

δ (t).

To bound J2, we recall (15) to get

|J2| ≤ ‖∇θ2‖L∞ ‖u‖L2 ‖θ‖L2 ≤ ‖θ2‖
B

1+ 1
r

r,1

Y 2
δ (t).

Inserting the bounds above in (16), we obtain

d

dt
Yδ(t) ≤ 2e M(t) [log L(t)− logYδ(t)] Yδ(t)+(1+‖θ2‖

B
1+ 1

r
r,1

)Yδ(t).
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It then follows from applying the Osgood inequality that

Yδ(t) ≤ L(t)1−B(t) Yδ(0)B(t),

where

B(t) ≡ exp

(
−
∫ t

0
(2e M(τ) + ‖θ2(τ)‖

B
1+ 1

r
r,1

) dτ

)
.

Since Yδ(0) = δ, we obtain by letting δ → 0 that

‖u(t)‖2
L2 + ‖θ(t)‖2

L2 ≡ 0

for any t > 0. This proves the uniqueness and thus Theorem 1.
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The Critical Dissipation
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The Cauchy problem of 2D fractional Boussinesq equations

∂u

∂t
+ (u · ∇)u + νΛαu +∇P = θe2,

∂θ

∂t
+ (u · ∇)θ + κΛβθ = 0,

div u = 0, (t, x) ∈ R+ × R2,

u(x , 0) = u0(x), θ(x , 0) = θ0(x).

(17)

where u(t, x) = (u1, u2) is the velocity vector field, P = P(t, x) is

the scalar pressure, θ(t, x) is the scalar temperature, ν ≥ 0 is the

viscosity, κ ≥ 0 is the thermal diffusivity, e2 = (0, 1), α, β ∈ (0, 2).

̂(−∆)αv(ξ) = |ξ|2αv̂(ξ).

In the following, for simplicity, we denote

Λ = (−∆)1/2.
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Two special critical cases

Hmidi, Keraani and Rousset were able to establish the global

regularity of the critical Navier-Stokes-Boussinesq equations,

namely (1) with ν > 0, κ = 0 and α = 1.

• T. Hmidi, S. Keraani and F. Rousset, Global well-posedness for a

Boussinesq Navier-Stokes system with critical dissipation, J. Differ-

ential Equations 249 (2010).
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Theorem 2 (Hmidi, Keraani and Rousset 2010)

Let θ0 ∈ L2 ∩ B0
∞,1 and v0 be a divergence-free vector field

belonging to H1 ∩ Ẇ 1,p with p ∈ (2,+∞). Then the system has a
unique global solution (v , θ) such that

v ∈ L∞loc(R+;H1 ∩ Ẇ 1,p) ∩ L1
loc(R+;B1

∞,1)

and
θ ∈ L∞loc(R+; L2 ∩ B0

∞,1).
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Motivation: Consider the new function

ω −Rθ.

The vorticity equation is given by

ωt + u · ∇ω + Λω = θx1 , Λ = (−∆)
1
2 .

The idea is to write Λω − θx1 = Λ(ω −Rθ), R = Λ−1∂x1 and

consider the difference with (Rθ)t +−→u · ∇(Rθ) = −[R, u · ∇]θ,

(ω −Rθ)t + u · ∇(ω −Rθ) + νΛ(ω −Rθ) = [R, u · ∇]θ.

The advantage of this new equation is that the commutator is much

more regular and thus can be controlled. In fact, the Lq-norm of

this commutator is more or less bound by ‖∇u‖Lq ‖θ‖B0
∞,1

and thus

this new formation makes the global Lq bound for ω possible.
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They were also able to establish the global regularity of the critical

Euler-Boussinesq equations, namely (1) with ν = 0, κ > 0 and

β = 1.

Theorem 3 (Hmidi, Keraani and Rousset 2011)

Let p ∈ (2,∞), v0 ∈ B1
∞,1 ∩ Ẇ 1,p be a divergence-free vector field

of R2 and θ0 ∈ B0
∞,1 ∩ Lp. Then there exists a unique global

solution (v , θ) to the system with

v ∈ L∞loc

(
R+;B1

∞,1∩Ẇ 1,p), θ ∈ L∞loc

(
R+;B0

∞,1∩Lp
)
∩L̃1

loc(R+;B1
p,∞).

T. Hmidi, S. Keraani and F. Rousset, Global well-posedness for

Euler-Boussinesq system with critical dissipation, Comm. Partial

Differential Equations 36 (2011).
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Proof of Theorem 3

Difficult

‖ω‖L2 ≤ C ??

IDEA: Introduce a new function:

ω +Rθ.

Combine the equations of ω and Rθ:

ωt + u · ∇ω = θx1

(Rθ)t + u · ∇(Rθ) = −RΛθ − [R, u · ∇]θ

Then we obtain the following equation

(ω +Rθ)t + u · ∇(ω +Rθ) = −[R, u · ∇]θ.
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The main technical difficulty in this program when one takes the

nonlinear terms into account is to evaluate the commutator

[R, v · ∇]. First we give some properties of the Riez operator

R = ∂1/|D|. where the operator |D|α is defined by

F(|D|αu)(ξ) = |ξ|α(Fu)(ξ).

Proposition 4

Let R be the Riez operator R = ∂1/|D|. Then the following hold
true.
i) For every p ∈ (1,+∞),

‖R‖L(Lp) . 1.
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Proposition 4

ii) Let χ ∈ D(Rd). Then, there exists C > 0 such that

‖|D|sχ(2−q|D|)R‖L(Lp) ≤ C2qs ,

for every (p, s, q) ∈ [1,∞]× (0,+∞)× N.
iii) Let C be a fixed ring. Then, there exists ψ ∈ S whose spectum
does not meet the origin such that

Rf = 2qdψ(2q·) ∗ f

for every f with Fourier transform supported in 2qC.
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Controlling the commutator between R and the convection

operator v · ∇ is a crucial ingredient in the proof of Theorem 3.

Proposition 5 (Commutator estimate)

Let v be is a smooth divergence-free vector field.
i) For every (p, r) ∈ [2,∞)× [1,∞] there exists a constant
C = C (p, r) such that

‖[R, v · ∇]θ‖B0
p,r
≤ C‖∇v‖Lp

(
‖θ‖B0

∞,r
+ ‖θ‖Lp

)
,

for every smooth scalar function θ.
ii) For every (r , ρ) ∈ [1,∞]× (1,∞) and ε > 0 there exists a
constant C = C (r , ρ, ε) such that

‖[R, v · ∇]θ‖B0
∞,r
≤ C (‖ω‖L∞ + ‖ω‖Lρ)

(
‖θ‖Bε∞,r + ‖θ‖Lρ

)
,

for every smooth scalar function θ.
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Now, turn to prove Theorem 3.(For simlicity, we just give a priori

estimate)

First, we will give some estimates for the linear transport-diffusion

model {
∂tθ + v · ∇θ + |D|θ = f
θ|t=0 = θ0.

(TD)

We can easily get the Lp estimate, for p ∈ [1,∞]

‖θ(t)‖Lp ≤ ‖θ0‖Lp +

∫ t

0
‖f (τ)‖Lpdτ. (18)

For p ∈ [1,∞) there exists a constant C such that

sup
q∈N

2q‖∆qθ‖L1
tL

p ≤ C‖θ0‖Lp + C‖θ0‖L∞‖ω‖L1
tL

p , (19)

for every smooth solution θ of (TD) with f = 0.
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Applying Riesz transform R to the temperature equation we get

∂tRθ + v · ∇Rθ + |D|Rθ = −[R, v · ∇]θ. (20)

Since |D|R = ∂1 then the function Γ := ω +Rθ satisfies

∂tΓ + v · ∇Γ = −[R, v · ∇]θ. (21)

According to the first part of Proposition 6

‖[R, v · ∇]θ‖B0
p,r
≤ C‖∇v‖Lp(‖θ‖B0

∞,r
+ ‖θ‖Lp),

applied with r = 2 we have∥∥[R, v · ∇]θ
∥∥
B0
p,2
. ‖∇v‖Lp

(
‖θ‖B0

∞,2
+ ‖θ‖Lp

)
.
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Using the classical embedding B0
p,2 ↪→ Lp which is true only for

p ∈ [2,∞)∥∥[R, v · ∇]θ
∥∥
Lp
≤ ‖∇v‖Lp

(
‖θ‖B0

∞,2
+ ‖θ‖Lp

)
.

Since div v = 0 then we get from the transport equation (21)

(∂tΓ + v · ∇Γ = −[R, v · ∇]θ)

‖Γ(t)‖Lp ≤ ‖Γ0‖Lp +

∫ t

0
‖[R, v · ∇]θ(τ)‖Lpdτ.

Putting together the last two estimates we get

‖Γ(t)‖Lp . ‖Γ0‖Lp +

∫ t

0
‖∇v(τ)‖Lp

(
‖θ(τ)‖B0

∞,2
+ ‖θ‖Lp

)
dτ

. ‖ω0‖Lp + ‖θ0‖Lp +

∫ t

0
‖ω(τ)‖Lp

(
‖θ(τ)‖B0

∞,2
+ ‖θ0‖Lp

)
dτ.
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On the other hand, from the continuity of the Riesz transform

Proposition 4 (‖R‖L(Lp) . 1) and (18) (‖θ(t)‖Lp ≤ ‖θ0‖Lp +
∫ t

0 ‖f (τ)‖Lpdτ)

‖ω(t)‖Lp ≤ ‖Γ(t)‖Lp + ‖Rθ‖Lp
. ‖Γ(t)‖Lp + ‖θ0‖Lp .

This leads to

‖ω(t)‖Lp . ‖ω0‖Lp+‖θ0‖Lp+

∫ t

0
‖ω(τ)‖Lp

(
‖θ(τ)‖B0

∞,2
+‖θ0‖Lp

)
dτ.

According to Gronwall lemma we get

‖ω(t)‖Lp ≤ C0e
C0te

C‖θ‖
L1
t B

0
∞,2 . (22)
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Let N ∈ N, by Bernstein inequalities and (18)

‖θ‖L1
tB

0
∞,2

≤ ‖SNθ‖L1
tB

0
∞,2

+ ‖(Id− SN)θ‖L1
tB

0
∞,1

. t‖θ0‖L∞
√
N +

∑
q≥N
‖∆qθ‖L1

tL
∞

.
√
N‖θ0‖L∞t +

∑
q≥N

2q
2
p ‖∆qθ‖L1

tL
p .

Using (19) (supq∈N 2q‖∆qθ‖L1
t L

p ≤ C‖θ0‖Lp + C‖θ0‖L∞‖ω‖L1
t L

p ) and p > 2

we obtain∑
q≥N−1

2q 2
p ‖∆qθ‖L1

t L
p .

∑
q≥N−1

2q( 2
p−1)

(
‖θ0‖Lp + ‖θ0‖L∞

∫ t

0

‖ω(τ)‖Lpdτ
)

. ‖θ0‖Lp + 2N(−1+ 2
p )‖θ0‖L∞

∫ t

0

‖ω(τ)‖Lpdτ.
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Thus, we get

‖θ‖L1
tB

0
∞,2
.
√
N‖θ0‖L∞t + ‖θ0‖Lp + 2N(−1+ 2

p
)‖θ0‖L∞

∫ t

0
‖ω(τ)‖Lpdτ.

We choose N as follows

N =

[
log
(
e +

∫ t
0 ‖ω(τ)‖Lpdτ

)
(1− 2/p) log 2

]
+ 1.

Then it follows

‖θ‖L1
tB

0
∞,2
. ‖θ0‖L∞∩Lp + ‖θ0‖L∞t log

1
2

(
e +

∫ t

0
‖ω(τ)‖Lpdτ

)
.
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Combining this estimate with (22) (‖ω(t)‖Lp ≤ C0eC0te
C‖θ‖

L1
t B

0
∞,2 ) we

get

‖θ‖L1
tB

0
∞,2

. ‖θ0‖L∞∩Lp + ‖θ0‖L∞t log
1
2

(
e + C0e

C0te
C‖θ‖

L1
t B

0
∞,2
)

≤ C0(1 + t2) + C‖θ0‖L∞t‖θ‖
1
2

L1
tB

0
∞,2
.

Thus we get for every t ∈ R+

‖θ‖L1
tB

0
∞,2
≤ C0(1 + t2).
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It follows from (22) (‖ω(t)‖Lp ≤ C0eC0te
C‖θ‖

L1
t B

0
∞,2 )

‖ω(t)‖Lp ≤ Φ1(t). (23)

Applying (19) (supq∈N 2q‖∆qθ‖L1
t L

p ≤ C‖θ0‖Lp + C‖θ0‖L∞‖ω‖L1
t L

p ) and (23)

we get

2q‖∆qθ‖L1
tL

p ≤ Φ1(t), ∀q ∈ N (24)

and thus

‖θ‖
L̃1
tB

1
p,∞
≤ Φ1(t).

Combing with (23), we have

‖ω(t)‖Lp + ‖θ‖
L̃1
tB

1
p,∞
≤ Φ1(t), p ∈ (2,∞). (25)
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It is not hard to see that from (24) (2q‖∆qθ‖L1
t L

p ≤ Φ1(t)) one can

obtain that for every s < 1

‖θ‖L1
tB

s
p,1
≤ ‖θ‖

L̃1
tB

1
p,∞
≤ Φ1(t). (26)

Combined with Bernstein inequalities and the fact that p > 2 this

yields

‖θ‖L1
tB

ε
∞,1
≤ Φ1(t), (27)

for every ε < 1− 2
p .
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By using the maximum principle for the transport equation (21)

(∂tΓ + v · ∇Γ = −[R, v · ∇]θ) , we get

‖Γ(t)‖L∞ ≤ ‖Γ0‖L∞ +

∫ t

0
‖[R, v · ∇]θ(τ)‖L∞dτ.

Since the function Rθ satisfies the equation(
∂t + v · ∇+ |D|

)
Rθ = −[R, v · ∇]θ, (28)

we get by using (18) (‖θ(t)‖Lp ≤ ‖θ0‖Lp +
∫ t

0 ‖f (τ)‖Lpdτ) for p =∞ that

‖Rθ(t)‖L∞ ≤ ‖Rθ0‖L∞ +

∫ t

0
‖[R, v · ∇]θ(τ)‖L∞dτ.
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Combining the last two estimates yields

‖Γ(t)‖L∞ + ‖Rθ(t)‖L∞

≤ ‖Γ0‖L∞ + ‖Rθ0‖L∞ + 2

∫ t

0

‖[R, v · ∇]θ(τ)‖L∞dτ

≤ C0 +

∫ t

0

‖[R, v · ∇]θ(τ)‖B0
∞,1

dτ.

It follows from the second estimate of Proposition 6 (‖[R, v ·∇]θ‖B0
∞,r
≤

C(‖ω‖L∞ + ‖ω‖Lρ )(‖θ‖Bε∞,r + ‖θ‖Lρ )) and (25) (‖ω(t)‖Lp + ‖θ‖
L̃1
tB

1
p,∞
≤ Φ1(t))

‖ω(t)‖L∞ + ‖Rθ(t)‖L∞

. C0 +

∫ t

0

‖ω(τ)‖L∞∩Lp

(
‖θ(τ)‖Bε∞,1 + ‖θ(τ)‖Lp

)
dτ

. C0 + ‖ω‖L∞t Lp

(
‖θ‖L1

tB
ε
∞,1

+ t‖θ0‖Lp

)
+

∫ t

0

‖ω(τ)‖L∞
(
‖θ(τ)‖Bε∞,1 + ‖θ0‖Lp

)
dτ.
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Let 0 < ε < 1− 2
p then using (27) (‖θ‖L1

tB
ε
∞,1
≤ Φ1(t)) we get

‖ω(t)‖L∞+‖Rθ(t)‖L∞ . Φ1(t)+

∫ t

0
‖ω(τ)‖L∞

(
‖θ(τ)‖Bε∞,1+‖θ0‖Lp

)
dτ.

Therefore we obtain by the Gronwall lemma and a new use of (27)

that

‖ω(t)‖L∞ + ‖Rθ(t)‖L∞ ≤ Φ2(t). (29)

Let N ∈ N to be chosen later. Using the fact that ‖∆̇qv‖L∞ ≈
2−q‖∆̇qω‖L∞ , we then have

‖v(t)‖L∞ ≤ ‖χ(2−N |D|)v(t)‖L∞ +
∑

q≥−N
2−q‖∆̇qω(t)‖L∞

≤ ‖χ(2−N |D|)v(t)‖L∞ + 2N‖ω(t)‖L∞ .
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Applying the frequency localizing operator to the velocity equation

we get

χ(2−N |D|)v =χ(2−N |D|)v0 +

∫ t

0
Pχ(2−N |D|)θ(τ)dτ

+

∫ t

0
Pχ(2−N |D|)div(v ⊗ v)(τ)dτ.

where P stands for Leray projector. From Bernstein inequalities,

Calderón-Zygmund estimate and the uniform boundness of

χ(2−N |D|) we get∫ t

0
‖χ(2−N |D|)Pθ(τ)‖L∞dτ . 2−N

2
p

∫ t

0
‖θ(τ)‖Lpdτ

. t‖θ0‖Lp .
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Using Proposition 4-(ii) (‖|D|sχ(2−q |D|)R‖L(Lp) ≤ C2qs) we find∫ t

0
‖Pχ(2−N |D|)div(v ⊗ v)(τ)‖L∞dτ . 2−N

∫ t

0
‖v(τ)‖2

L∞dτ.

The outcome is

‖v(t)‖L∞ . ‖v0‖L∞ + t‖θ0‖Lp + 2−N
∫ t

0
‖v(τ)‖2

L∞dτ + 2N‖ω(t)‖L∞

. 2−N
∫ t

0
‖v(τ)‖2

L∞dτ + 2NΦ2(t)

Choosing judiciously N we find

‖v(t)‖L∞ ≤ Φ2(t)
(

1 +
(∫ t

0
‖v(τ)‖2

L∞dτ
) 1

2
)
.
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From Gronwall lemma we get

‖v(t)‖L∞ ≤ Φ3(t). (30)

First, we need a logarithmic estimates of the transport equation

(∂t + v · ∇+ κ|D|)θ = f ,

then we have

‖θ‖
L̃∞t B0

p,1
≤ C

(
‖θ0‖B0

p,1
+ ‖f ‖L1

tB
0
p,1

)(
1 +

∫ t

0
‖∇v(τ)‖L∞dτ

)
,

(31)

for p ∈ [1,∞](Details see Theorem 4.5 in Hmidi,Keraani and

Rousset 2011).
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By using the logarithmic estimates of the equations (21) (∂tΓ+v ·∇Γ =

−[R, v · ∇]θ) and (28) ((∂t + v · ∇+ |D|)Rθ = −[R, v · ∇]θ), we obtain

‖Γ(t)‖B0
∞,1

+‖Rθ(t)‖B0
∞,1
.
(
C0+

∥∥[R, v ·∇]θ
∥∥
L1
tB

0
∞,1

)(
1+‖∇v‖L1

tL
∞

)
.

(32)

Thanks to Propositions 6 (‖[R, v ·∇]θ‖B0
∞,r
≤ C(‖ω‖L∞ + ‖ω‖Lρ )(‖θ‖Bε∞,r +

‖θ‖Lρ )) , (25)(‖ω(t)‖Lp + ‖θ‖
L̃1
tB

1
p,∞
≤ Φ1(t)) (29)(‖ω(t)‖L∞ + ‖Rθ(t)‖L∞ ≤

Φ2(t)) and (27) (‖θ‖L1
tB
ε
∞,1
≤ Φ1(t)) we get

∥∥[R, v · ∇]θ
∥∥
L1
tB

0
∞,1
.
∫ t

0
(‖ω(τ)‖L∞ + ‖ω(τ)‖Lp)(

‖θ(τ)‖Bε∞,1 + ‖θ(τ)‖Lp
)
dτ

.Φ2(t).
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By easy computations we get

‖∇v‖L∞ ≤ ‖∇∆−1v‖L∞ +
∑
q∈N
‖∆q∇v‖L∞

. ‖ω‖Lp +
∑
q∈N
‖∆qω‖L∞

. Φ1(t) + ‖ω(t)‖B0
∞,1
. (33)

Putting together (32) and (33) leads to

‖ω(t)‖B0
∞,1
≤ ‖Γ(t)‖B0

∞,1
+ ‖Rθ(t)‖B0

∞,1

≤ Φ2(t)
(

1 +

∫ t

0
‖ω(τ)‖B0

∞,1
dτ
)
.

Thus we obtain from Gronwall inequality

‖ω(t)‖B0
∞,1
≤ Φ3(t). (34)
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Coming back to (33)(‖∇v‖L∞ . Φ1(t) + ‖ω(t)‖B0
∞,1

) we get

‖∇v(t)‖L∞ ≤ Φ3(t).

Let us move to the estimate of v in the space B1
∞,1. By definition

we have

‖v(t)‖B1
∞,1
. ‖v(t)‖L∞ + ‖ω(t)‖B0

∞,1
.

Combined with (30) (‖v(t)‖L∞ ≤ Φ3(t)) and (34) (‖ω(t)‖B0
∞,1
≤ Φ3(t))

this yields

‖v(t)‖B1
∞,1
≤ Φ3(t).
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Commutator Estimate

Proposition 6 (Commutator estimate)

Let v be is a smooth divergence-free vector field.
i) For every (p, r) ∈ [2,∞)× [1,∞] there exists a constant
C = C (p, r) such that

‖[R, v · ∇]θ‖B0
p,r
≤ C‖∇v‖Lp

(
‖θ‖B0

∞,r
+ ‖θ‖Lp

)
,

for every smooth scalar function θ.
ii) For every (r , ρ) ∈ [1,∞]× (1,∞) and ε > 0 there exists a
constant C = C (r , ρ, ε) such that

‖[R, v · ∇]θ‖B0
∞,r
≤ C (‖ω‖L∞ + ‖ω‖Lρ)

(
‖θ‖Bε∞,r + ‖θ‖Lρ

)
,

for every smooth scalar function θ.
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Proof of Commutator Estimate

The following inequality will be useful to give the proof of

Proposition 6.

Lemma 7

Given (p,m) ∈ [1,∞]2 such that p ≥ m′ with m′ the conjugate
exponent of m. Let f , g and h be three functions such that ∇f ∈
Lp, g ∈ Lm and xh ∈ Lm

′
. Then,

‖h ∗ (fg)− f (h ∗ g)‖Lp ≤ ‖xh‖Lm′‖∇f ‖Lp‖g‖Lm .
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Proof of Commutator Estimate

We split the commutator into three parts,

[R, v · ∇]θ =
∑
q∈N

[R,Sq−1v · ∇]∆qθ +
∑
q∈N

[R,∆qv · ∇]Sq−1θ

+
∑
q≥−1

[R,∆qv · ∇]∆̃qθ

=
∑
q∈N

Iq +
∑
q∈N

IIq +
∑
q≥−1

IIIq

= I + II + III.
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We start with the estimate of the first term I. According to the iii)

of Proposition 4 there exists h ∈ S whose spectum does not meet

the origin such that

Iq(x) = hq ∗ (Sq−1v · ∇∆qθ)− Sq−1v · (hq ∗ ∇∆qθ),

where hq(x) = 2dqh(2qx).

Applying Lemma 7 (‖h ∗ (fg)− f (h ∗ g)‖Lp ≤ ‖xh‖Lm′ ‖∇f ‖Lp‖g‖Lm ). with

m =∞ we get

‖Iq‖Lp . ‖xhq‖L1‖∇Sq−1v‖Lp‖∆q∇θ‖L∞
. ‖∇v‖Lp‖∆qθ‖L∞ . (35)

In the last line we’ve used Bernstein inequality and

‖xhq‖L1 = 2−q‖xh‖L1 .
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Combined with the trivial fact

∆j

∑
q

Iq =
∑
|j−q|≤4

Iq

this yields

‖I‖B0
p,r
.

( ∑
q≥−1

‖Iq‖rLp
) 1

r

. ‖∇v‖Lp‖θ‖B0
∞,r
.
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Let us move to the second term II. As before one writes

IIq(x) = hq ∗ (∆qv · ∇Sq−1θ)−∆qv · (hq ∗ ∇Sq−1θ),

and then we obtain the estimate

‖IIq‖Lp . 2−q‖∆q∇v‖Lp‖Sq−1∇θ‖L∞
. ‖∇v‖Lp

∑
j≤q−2

2j−q‖∆jθ‖L∞ .

Combined with convolution inequalities this yields

‖II‖B0
p,r
. ‖∇v‖Lp‖θ‖B0

∞,r
.
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Let us now deal with the third term III. Using that the divergence

of ∆qv vanishes, we rewrite III as

III =
∑
q≥2

Rdiv(∆qv ∆̃qθ)−
∑
q≥2

div(∆qv R∆̃qθ)

+
∑
q≤1

[R,∆qv · ∇]∆̃qθ

= J1 + J2 + J3.

Using Proposition 4 ii), (‖|D|sχ(2−q |D|)R‖L(Lp) ≤ C2qs) we get∥∥∆jRdiv(∆qv ∆̃qθ)
∥∥
Lp
. 2j‖∆qv‖Lp‖∆̃qθ‖L∞ .
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Also, since ∆̃qθ is supported away from zero for q ≥ 2 then

Proposition 4 iii) (Rf = 2qdψ(2q·) ∗ f ) yields∥∥∆jdiv(∆qv R∆̃qθ)
∥∥
Lp
. 2j‖∆qv‖Lp‖R∆̃qθ‖L∞

. 2j‖∆qv‖Lp‖∆̃qθ‖L∞ .

Therefore we get

‖∆j(J1 + J2)‖Lp .
∑
q∈N

q≥j−4

2j‖∆qv‖Lp‖∆̃qθ‖L∞

. ‖∇v‖Lp
∑
q∈N

q≥j−4

2j−q‖∆qθ‖L∞ ,

where we have again used Bernstein inequality to get the last line.

It suffices now to use convolution inequalities to get

‖J1 + J2‖B0
p,r
. ‖∇v‖Lp‖θ‖B0

∞,r
.
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For the last term J3 we can write∑
−1≤q≤1

[R,∆qv · ∇]∆̃qθ(x) =
∑
q≤1

[div χ̃(D)R,∆qv ]∆̃qθ(x),

where χ̃ belongs to D(Rd). Proposition 4 ensures that div χ̃(D)R
is a convolution operator with a kernel h̃ satisfying

|h̃(x)| . (1 + |x |)−d−1.

Details refer to see the proof of Proposition 3.1. Hmidi, Keraani

and Rousset 2011. Thus

J3 =
∑
q≤1

h̃ ∗ (∆qv · ∆̃qθ)−∆qv · (h̃ ∗ ∆̃qθ).
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First of all we point out that ∆jJ3 = 0 for j ≥ 6, thus we just

need to estimate the low frequencies of J3. Noticing that xh̃ be-

longs to Lp
′

for p′ > 1 then using Lemma 7 (‖h ∗ (fg) − f (h ∗ g)‖Lp ≤

‖xh‖
Lm
′ ‖∇f ‖Lp‖g‖Lm ) with m = p ≥ 2 we obtain

‖∆jJ3‖Lp .
∑
q≤1

‖xh̃‖Lp′‖∆q∇v‖Lp‖∆̃qθ‖Lp

. ‖∇v‖Lp
∑

−1≤q≤1

‖∆qθ‖Lp .

This yields finally

‖J3‖B0
p,r
. ‖∇v‖Lp‖θ‖Lp .

This completes the proof of the first part of Proposition 6.
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To estimate the terms I and II we use two facts: the first one is

‖∆q∇u‖L∞ ≈ ‖∆qω‖L∞ for all q ∈ N. The second one is

‖∇Sq−1v‖L∞ . ‖∇∆−1v‖L∞ +

q−2∑
j=0

‖∆j∇v‖L∞

. ‖ω‖Lρ + q‖ω‖L∞ .

For the remainder term we do the same analysis as before except

for J3: we apply Lemma 7 with p =∞ and m = ρ leading to

‖∆jJ3‖Lp .
∑
q≤1

‖xh̃‖Lρ′‖∆q∇v‖L∞‖∆̃qθ‖Lρ

. ‖∇v‖Lρ
∑

−1≤q≤1

‖∆qθ‖Lρ

. ‖ω‖Lρ‖θ‖Lρ .

This ends the proof of the Proposition. �
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General critical case

Jiu, Miao Wu and Zhang obtained the global regularity for the

general critical dissipation α + β = 1.

Jiu, Quansen; Miao, Changxing; Wu, Jiahong; Zhang, Zhifei The

two-dimensional incompressible Boussinesq equations with general

critical dissipation. SIAM J. Math. Anal. 46 (2014).
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Theorem 8 (Jiu, Miao, Wu, Zhang, 2014)

Let α0 < α < 1 and α + β = 1, where

α0 =
23−

√
145

12
≈ 0.9132. (36)

Assume that u0 ∈ Bσ2,1(R2) with σ ≥ 5
2 and θ0 ∈ B2

2,1(R2). Then
the fractional Boussinesq has a unique global solution (u, θ) satis-
fying, for any 0 < T <∞,

u ∈ C ([0,T ];Bσ2,1(R2)) ∩ L1([0,T ];Bσ+α
2,1 (R2)),

θ ∈ C ([0,T ];B2
2,1(R2)) ∩ L1([0,T ];B2+β

2,1 (R2)).
(37)
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The authors also introduced the new quantity

G = ω −Rαθ with Rα = Λ−α∂1,

which satisfies

∂tG + u · ∇G + ΛαG = [Rα, u · ∇]θ + Λβ−α∂1θ.

The regularity of G here does not translate to the regularity on the

vorticity ω in the general case, since the corresponding regularity of

Rαθ is not known for α < 1.

78 / 82



Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

Fractional dissipation case

By obtaining a suitable estimate for [Rα, u · ∇]θ, they obtained a

global bound for ‖G‖L2 when α > 4
5 . In addition, with α > 4

5 , a

global bound is also established for ‖G‖Lq when q is in the range

2 < q < q0 =
8− 4α

8− 7α
.

This global bound for ‖G‖Lq enables them to estiamte ‖G‖Bs
q,∞ ,

‖G (t)‖Bs
q,∞ ≤ C ,

for α0 < α and s ≤ 3α− 2, and this will give a bound for part of

∇u.
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Through the temperature equation

∂tθ + u · ∇θ + Λβθ = 0. (38)

They offered a different approach to gaining further regularity by θ.

Since u is determined by ω through u = ∇⊥∆−1ω and ω = G+Rαθ
, So u can be decomposed into two parts,

u = ∇⊥∆−1ω = ∇⊥∆−1G +∇⊥∆−1Rαθ ≡ ũ + v .

and ũ is more regular in the sense that

‖∇ũ‖L∞ = ‖∇∇⊥∆−1G‖L∞ ≤ C ‖G‖Bs
q,∞ ≤ C .
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In addition, when α + β = 1, v in terms of θ can be written as

v = ∇⊥∆−1Λ−(1−β) ∂1 θ.

Therefore, (38) is almost a generalized critical surface quasi-geostrophic

(SQG) type equation.
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Subcritical case

P. Constantin and V. Vicol, GFA, 2012. Global regularity for the

subcritical case by a different approach.

Theorem 9 (P. Constantin and V. Vicol 2012)

Assume that (u0, θ0) ∈ S, the Schwartz class. If β > 2
2+α , then

the Boussinesq equations has a unique global smooth solution.

The proof involves the pointwise inequality for fractional Laplacian

∇f · Λα∇f (x) ≥ 1

2
Λα|∇f |2 +

|∇f (x)|2+α

c ‖f ‖αL∞
.

Note that in this theorem α + β > 1, a subcritical case.
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