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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

We consider the Cauchy problem of 2D fractional diffusion
Boussinesq equations for an incompressible fluid flows in R?

0
a—:+(u-V)u+1/(—A)o‘u+VP:962,
00
. —_Ag —
8t+(u V)0 + k(—A)°6 = 0, (1)

divu =0, (t,x) € Ry x R?,
u(x,0) = up(x), 6(x,0) = Op(x).

where a, 5 € (0,1), and (—A)“ is the pseudodifferential operator
defined via the Fourier transform

(ZD)v(€) = [€22T(e).

In the following, for simplicity, we denote

A= (-D)Y2
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

Theorem 3.4 (Global well-posedness; Xiaojing Xu 2010)

Let v >0, k > 0 be fixed, & € [1,1), 8€ (0,3], a4+ B =1, and
div up = 0. Let m > 2 be an integer, and (uo, ) € H™ (R?).
Then, there exists a unique solution (u, ) to the Cauchy problem
(1) such that

6 € C([0,00); H™(R?)) N L2(0, o0; H™F(R?)),

and
u € C([0,00); H™(R?)) N L(0, 0o; H™T*(R?)).

Remark 1.1. For simplicity of the exposition, we formulate and
prove Theorem 3.4 in the subcritical case a + 3 =1, only. One
can easily verify that, by arguments from this work, we can obtain
an analogous result for 1 < a+ 38 < 2.
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

Lemma 3.1 (Positive Inequality)

Let 0 < a < 2. For every p > 1, we have

/Rn (A°w) |w|P~2w dx > C(p)/Rn (A%\W|§)2 dx, (2

for all w € LP (R") such that A®w € LP (R"), where
C(p) = H2z1.

Remark: This inequality is well-known in the theory of
sub-Markovian operators e.g.

e V.A. Liskevich, Yu.A. Semenov, Some problems on Markov
semigroups, Schrédinger operators, Markov semigroups, wavelet
analysis, operator algebras, Akademie Verlag, Berlin, 1996.
Observe that if a = 2, integrating by parts we obtain (2) with the
equality.
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

Theorem 3.5 (Blow-up Criterion; Xiaojing Xu 2010)

Let a, 8 € [0,2], v > 0, k > 0. Suppose (up,fp) € H™(R?)
with m > 2 being an integer. Then, there exists a unique lo-
cal classical solution (u,8) € C([0, T); H™(R?)) of problem (1)
for some T = T(|luollHm(w2), 00]lim(r2)). Moreover, the solu-
tion remains in H™ (R?) up to a time Ty > T, namely (u,6) €
C ([0, T1]; H™ (R?)) if and only if

§
/0 IV0(7)||1sedr < oo. (3)
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

e In the inviscid case v = 0 and k = 0, Blow up Criterion was proved
in Chael997. The arguments from that works with minor changes
also for problem (1) with the fractional diffusion, due to inequality
(2). By this reason, we skip details of the proof of Theorem 3.5.

e In order to prove Theorem 3.4, it suffices to show that (3) holds
true for the smooth solutions (u, #) to the Cauchy problem (1).

e In the following section, we first show some a priori estimates for
a smooth solution (u,0) € C([0, T); H™(R2)) with m > 2 to (1),
then prove that (3) is valid.
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

For simplicity, let v = k = 1.

e Estimate of ||9HL00(0’OO;LFJ(R2)).

Let p > 2. Multiplying the second equation in (1) by |#|P~26 and
integrating over R?, we deduce that

1d o ‘ -
el —A)P0|9|P20dx =
pdtll9(t)|Lp+/O( )7010|P~=6dx = 0,

where we have used the divergence free condition. This identity
together with Lemma 3.1, allows us to get

t
P
10(E)I1Z- + C(p)/0 IA%1612 (7)IIZ2 d < 160]l .

In particular, when p = 2, we have

t
16(2) 122 + /0 INP0(r) 22 dr < (6o, (4)
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

e Estimate of ||ul| o (0,00;12(R2))-
Multiplying the first equation of (1) by u, and integrating it over
R?, we have

1d
’U(t)”%z"‘/ u(—A)*u dx:/ feo|ul? dx—/ (u-V)|uf? dx
2dt R2 R2 R2

- VPu dx.
R2
This identity together with inequality (2) and the divergence free
condition, yield that

sl + [ Al ax= [ e dx < [0 el (o) o

By (4) and the Holder inequality, we deduce that
t
Ja(®l +4 [ IA°u(r) e dr < 410017 T2 +2 ol
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

e Estimate of ||W(t)||Loo(07OO;L2(R2)).
Taking the operation curl on both sides of the first equation in (1)
and denoting w = curl u = Oy, up — Ox, U1, We get

wr+ (—A)*w+ (u-V)w = —0,,. (5)

Multiplying the above equality by w, integrating over R?, we find

1d o 2 1 5
33w O+ I8l = 5 [ (Dl ax— [ s
=— [ Oqwdx
R2

1 , 1
< S IAwl + I

Here, in the last inequality, we have used the Parseval theorem and
the relation o + 5 = 1.
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

Thus, we have
w02 + 1Al < IA%0]2.
dt

By virtue of estimate (4), we deduce that

t t
lwo(£)122 + /0 IA%w(r) |2 dr < JlwollZ + /0 IN%0(r)|2: dr

< C(llwoll2, I0oll 2, T) -
(6)
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

e Estimate of [A*Dw|| ;e (0 00:12(r2))
We first compute the derivative V = (0y,, Ox,) of both sides of (5),

and then take L? inner product with Vw. After integration by parts,
we obtain

1 d
HVw( )12 + ||AaVoJ||f2 =— /Rz[V(u - V)w]Vwdx — /RZ Vo, Vwd

— [ [(Vu-V)w]Vwdx — / Vo, Vwdx
R2 R2
1 1
<[V AHVWHBHVWH 2+5 ||/\avw||%2 + SNVl

1 , 1
<[ Vul 2 |IVels HA“VwHLz + 5 NVl + S IA VOl

1
< CITull 5 IVl + 2 1AVl f + 21NVl
7)

where we have used the assumptions o > % and divu = 0.
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L Fractional dissipation case

Next, computing the derivative V+ = (—0y,, 0y, ) of the second
equation from (1), we easily show that

V40: 4+ VE[(u - V)0 + (-A)PVEe = 0.
We multiply the above equality by V16, and integrate it over R2.
Similar arguments as those in (7) lead to
1d
2dt
< —/ (u-V)VEOV+odx 7/ V0 - Vuv+todx
R2 R2

IV=0(e) 17 + A V0]

=Vull, 2 IV 6lll V)], 2 (8)
<[Vull 2 V40l A7V 0) 2

1 1
<SIVul? 2 V5Ol + S IA V0.
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

Now, combining (7) with (8), one can show the function
X(t) = [Vw(t)| 2 + [[V0(t) | 2.

satisfies the inequality

d _2a
X0 < CUVullS + [ Vull? 2 )X(2).
[T—« LT-«

Therefore, Gronwall's inequality and the embedding inequality and
estimate (6) yield that

X(t) < €X(0) exp{/o (IIVU(T)HZ{@ +IVu(D)? 2, )dr}
SCX(O)eXP{/O (A1 + IAw(r) [ )dr}

B t 322y t
scxw)exp{r‘%af ([ intoi ar) ™+ [ dr}
0 0

< (T, Nlwollyz » 160l 1)-

14/82
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L Fractional dissipation case

Finally, by virtue of estimate (7), we deduce

t
IVe(t)lIZ2 +/0 IN*Ve(r)l72 dr < C (T, lluolle s 160 )
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

e Estimate of ||v9HLoo(o’oo;Loo(R2))

Multiplying (3.9) by \vie}”‘z V16, and integrating it over R?, we
have

1d

L ITHOIE + CEITOIP < [ V0 VulToP 2y eax
P dt [ T—o R2

—a

< IVull V40117

Using Gronwall's inequality and the obvious identity [|[VQ||» =
[V+Q|| ., we easily show that

t
IVO(t)lle < C VOl exp{/o IIVU(T)HLwdT}-
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

This inequality together with the Gagliardo-Nirenberg inequality,
allows us to obtain

/ [Vu(r)lleedr < C/ o)l
< CT +1 e 1+a
E ||w )7 dr +C AN %(T) - dr

< C (T, ||U0||Hz 160l 1) -

N ()

1
I+
dr
12

Using Sobolev embedding
1O pmey < CIFC) I ms(r2)y, s> 1,

where C is independent of p € [2, 0], then we have, for all
t e [0’ T]1

t
IV6(8) 10 < C o]l o exp{ / HVu(T)andT} -c
0

where C is independent of p.
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

Passing to the limit p — oo in above inequality, we obtain
IVO(t)[| e < C(T, lluoll e, 100l gm) - V2t € [0, T].

This implies that condition (3) holds true, and according to The-
orem 3.5, we obtain a unique solution of (1) such that (u,0) €
C ([0,00); H™ (R?)). By (7). (8) and the iteration process, we con-
struct u € L? (0,00; Hmte (R2)) and 6 € 2 (0,00; Hm+6 (R2)),
and we complete the proof of Theorem 3.4. (]
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The Sub-critical Dissipation
with Yudovich Type Data
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

Global well-posedness

Sub-critical Boussinesq Equations with Yudovich Initial Data

Otu+u-Vu+vAN*u=—-Vp+ ey,
o0+ u-VO+NO=0,

V-u=0,

u(x,0) = up(x), 6(x,0) = 0Ou(x),

where v > 0, o € (0,1] and 3 € (1,2].
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

Theorem 1 (Wu-X., 2014)

Consider (9) with eitherv >0 orv =0, a € (0,1] and 8 € (1, 2].
Let g > % Assume ug satisfying V - up = 0 and ug € L?(R?),
wo =V X up € LI(R2) N L2(R?). Assume 0y € L*(R?) N LI(R?).
Then, there exists a unique solution (u,0) to (9) such that, for
some r € (2,q),

u € Coe([0,00); 2N L®), w e L2(0,00; L9N L),

2
6 € C([0,00); L2 N L) N L3(0, 00; H7 ) N LLc(0, 00; By (10)

Furthermore, the bounds for (u,0,w) in the class (10) are
independent of v even in the case when v > 0.
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

Assume that V - u = 0 and 0 solves

0:0 + u-V6O -+ No =0, (11)
H(X7 O) = Ho(X).

Let r € [2,00). Then 0 obeys the estimate: for any integer j > 0,

29|88l 31 < € I6oller (14 Iollizge + G + 2l ) - (22)
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

Proof of Lemma. Applying A; to (11) and taking inner product
with A;0|A;0|7~2, we obtain

1
d||A 0+ /A0|A 01" 2N dx = — /A 0|20 Aj(u-V0) dx.
(13)

The dissipative term obeys the following lower bound

/Ajeijer—?/\ﬁe dx > C2% | 005,

23/82



Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

Using the notion of para-products, we write
Aj(u-VO) = 1+ S+ J13 + J1a + Jis,

where

Ju= Y [Af, Sk1u- VAL,
li—k|<2

J12 = Z (Sk_lu - Sju) . VAJ'A/(Q,
i—k|<2

J13 = Sju . VAJ'Q,

J14 = Z Aj(AkU . VSk,lﬁ),
li—k|<2

J15 = Z Aj(Aku . Vﬁke)
k>j—1
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

Since V- u =0, we have
/J13‘Aj9’r_2Aj9 dx = 0.
By Holder's inequality,

\ / |82 dx| < [l A0

Remark: Introduce the Littlewood-Paley decomposition, we write
for each j € Z

Aj = {g eRY: 2l < ¢ < 21+1}.

The Littlewood-Paley decomposition asserts the existence of a
sequence of functions {®;};cz € S such that

supp®; C Aj, ®;(£) = Do(279€) or bdj(x) = 29dy(2x),
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

We write the commutator in terms of the integral,

i = /q’j(x = ¥) (Sk-1u(y) = Sk—1u(x)) - VAH(y) dy,

where ®; is the kernel of the operator A;. By Young's inequality
for convolution,

[ Jualler

IN

X190 x 1V Sj-1ull o< [V A8l 1r
< IxI@oC)lr IV Sj-vullie | Aj0]] 1
ClIVSj-rullie |A4;0]|Lr,

where we have used the definition of ®; and Bernstein's inequality
in the second inequality above.
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L Fractional dissipation case

By Bernstein’s inequality,

| J1allr

|| J15]|Lr

[S2ller < CllAjulle=][VA;B] -
< ClVAjullre || A0
< Cllwlleee [[A;0]]1r;

< CHAjUHLOOHVSj—lHHL'

< CVAull D 2D Ao

m<j—2
< Cllwlee Z 2D A bl
m<j—2

< € Y U VA= Akb] e
k>j—1

< Clwliee Y 2579201

k>j—1
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

Inserting the estimates above in (13), we have

d .
850l + C 2P| A0)1r < € IVS) gl (145610

+ Cllwles 185001 + Y 2D b1
m<j—2

+ > 2079 A0

k>j—1

Integrating in time, taking L} and multiplying by 285 we obtain
(12). This completes the proof of Lemma 1.
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L Fractional dissipation case

Proof of Theorem 1

The local existence can be established through a standard
procedure. We provide the global a priori bounds needed for the
global existence. Obviously,

16(t) 12 < [l€oll2,  116()l|Le < [6o]lLs,
[u(®)ll 2 < [luoll2 + (6o -

Since w satisfies
Orw + u - Vw + v\ w = 04,0,

it is clear that, for any v > 0,

t
lw(t)lLanree < llwollLante +/ 10x6(7) | Lamiee 7. (14)
0
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Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

To obtain a global bound for ||w(t)||Lan, we make use of the
smoothing effect in the #-equation. By Lemma 1, for any
2<r<gand0<e<f,

sup12(ﬁ VNablaer < Clloller(+ [lwll i eenie))-
>—

Choosing 2 < r < g and 0 < € < 3 such that 1+%<5—6, we
have, by Bernstein's inequality,

H9H g2 S sup 2(5 V)20 11y,
r1 Jj>=

IVO(T) || Laroe <

21| A;0]| Lari

|
—

= - (15)
< C Y 2 ab]e = ol Lz

JZ_]- rl
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L Fractional dissipation case

Combining these estimates, we obtain

t
161,y 2:2 < € 1ol (1+ ehoollimos + [ 101, 7 ar).

By Gronwall’s inequality, for C depending on ||0o||;2n14 and

[|wollLoeta only,

Ct
Consequently, by (14), [|wl[ s (roonLa) < Ceft.
In addition, by Gagliardo-Nirenberg inequality,

1 1
lullee < Cllullfz lwll oo

which yields the global bound for ||u||;e. This completes the proof
for the global bounds, which are independent of v even in the case

when v > 0.
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L Fractional dissipation case

Next we show that any two solutions satisfying (10) must coincide.
Assume that (u1,0:1) and (u2,602) are two solutions of (9) and let
p1 and po be the associated pressures, respectively. Consider the

differences
u=uy—u, 0=0—-01, p=p2—p1,
which satisfy

Oru+u-Vip+u - Vu+vAu=—Vp+ e,
A0 + u- Voo + uy - VO+ N6 =0.
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L Fractional dissipation case

Taking the inner product with (u, ) and integrating by parts lead

to
1d

2dt
< lullz 101l 2 + S + Ja,

(e +101%) +vINFule + 101 o

where
J1:—/U~Vuz-udx, JQZ—/U'v02'9dX.

For notational convenience, we let 6 > 0 and write

YE(t) = 8% + [lu(t)l|Z + 10(2) 172
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L Fractional dissipation case

For any p € [2,00), we have
2 2.2
[l < lullfes [V u2l[ie fJull 2 ”-

Furthermore,

lull e <l + unllis = L(),
\Y
IVl < psup Y220 < oncey
p>2 P

is bounded due to

where we have used the fact that sup,>, ||V“p2H“’

wp € LINL™>.
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L Fractional dissipation case

Therefore, by optimizing the bound over p, we have

| A < M(t)p (L(5)> Y7 < 2e M(t) [log L(t) — log Ys(t)] Yi(t).
To bound J,, we recall (15) to get

|2l < [IVO2l e [lull 2 19112 < [162]] 1.2 YE(t).

rl
Inserting the bounds above in (16), we obtain

< ¥i(t) < 2 M(2) llog L(2) ~ log Y3(£)] Ys(t)+ (1162l ) Vo0
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L Fractional dissipation case

It then follows from applying the Osgood inequality that
Ys(t) < L(t) B v5(0)50),

where

B(t) = exp <— /Ot(2e M) + 162071 1) dT) .

r,1
Since Y5(0) = d, we obtain by letting 6 — 0 that
lu(t)lIZ2 + 1) 172 = 0

for any t > 0. This proves the uniqueness and thus Theorem 1.
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L Fractional dissipation case

The Critical Dissipation
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L Fractional dissipation case

The Cauchy problem of 2D fractional Boussinesq equations

(Ou o
§+(U’V)U+V/\ u+ VP =0e,
f V)0 + kA0 =0
5 T (U V)0 + kN0 =0, (17)

divu=0, (t,x)€R. xR?
U(Xv 0) = UO(X)a 9(X7 0) = GO(X)'

where u(t,x) = (u1, up) is the velocity vector field, P = P(t,x) is
the scalar pressure, 6(t, x) is the scalar temperature, v > 0 is the
viscosity, k£ > 0 is the thermal diffusivity, e, = (0,1), o, 8 € (0,2).

(ZD)v(€) = [€22T(e).

In the following, for simplicity, we denote

A= (-D)Y2
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L Fractional dissipation case

Two special critical cases

Hmidi, Keraani and Rousset were able to establish the global
regularity of the critical Navier-Stokes-Boussinesq equations,
namely (1) with v > 0,k =0 and a = 1.

e T. Hmidi, S. Keraani and F. Rousset, Global well-posedness for a
Boussinesq Navier-Stokes system with critical dissipation, J. Differ-
ential Equations 249 (2010).
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L Fractional dissipation case

Theorem 2 (Hmidi, Keraani and Rousset 2010)

Let % € 2N Bgo,l and V0 be a divergence-free vector field

belonging to H* N WP with p € (2,400). Then the system has a
unique global solution (v,0) such that

v € LR (R HY N W) N L (R B, 1)

and
0 € L. (Ry; L2 N BY, ).

loc
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L Fractional dissipation case

Motivation: Consider the new function
w — RO.

The vorticity equation is given by

N|=

w+u-Vw+ A =0, A= (-A)2.

The idea is to write Aw — 65, = A(w — R), R = A~10,, and
consider the difference with (R8): + o - V(RH) = —[R, u - V]9,

(w—RO)+ u-V(w—RO) +vANw—R0O) =[R,u-V]6b.

The advantage of this new equation is that the commutator is much
more regular and thus can be controlled. In fact, the L9-norm of
this commutator is more or less bound by ||Vul[.s [|¢)|go_ and thus

this new formation makes the global L9 bound for w p055|ble
41/82
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L Fractional dissipation case

They were also able to establish the global regularity of the critical
Euler-Boussinesq equations, namely (1) with v = 0,k > 0 and

B=1

Theorem 3 (Hmidi, Keraani and Rousset 2011)

Let p € (2,00), v € BL ; N WLP be a divergence-free vector field
of R? and 8° € B% | N LP Then there exists a unique global
solution (v,8) to the system with

vE L|0C(R+' Bl lmWLp): e Lﬁ)oc(R+; Bgo,lmL )leoc(RJrv Bl )

T. Hmidi, S. Keraani and F. Rousset, Global well-posedness for
Euler-Boussinesq system with critical dissipation, Comm. Partial
Differential Equations 36 (2011).
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L Fractional dissipation case

Proof of Theorem 3

Difficult
Jwllz < € 77

IDEA: Introduce a new function:
w+RO.
Combine the equations of w and RE:
we+u-Vw =0y
(RO)t + u-V(RO) = —RN — [R,u-V]o
Then we obtain the following equation
(w+ RO+ u-V(w+RO)=—[R,u-V]b.
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L Fractional dissipation case

The main technical difficulty in this program when one takes the
nonlinear terms into account is to evaluate the commutator
[R,v - V]. First we give some properties of the Riez operator

R = 01/|D|. where the operator |D|“ is defined by

F(ID[*u)(€) = [¢]*(Fu)(€)-

Proposition 4

Let R be the Riez operator R = 01/|D|. Then the following hold
true.

i) For every p € (1,+00),

IRl ey S 1.
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L Fractional dissipation case

ii) Let x € D(R?). Then, there exists C > 0 such that

IIDFX(™IDNR ey < €27,
for every (p, s, q) € [1,00] x (0,+00) x N.

iiif) Let C be a fixed ring. Then, there exists 1 € S whose spectum
does not meet the origin such that

Rf = 299)(29.) * f

for every f with Fourier transform supported in 29C.
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L Fractional dissipation case

Controlling the commutator between R and the convection
operator v - V is a crucial ingredient in the proof of Theorem 3.

Proposition 5 (Commutator estimate)

Let v be is a smooth divergence-free vector field.
i) For every (p,r) € [2,00) x [1,00] there exists a constant
C = C(p, r) such that

IR, v - V1bllgg, < CIVVIieo (10llga, , + 16llee)

for every smooth scalar function 6.
ii) For every (r,p) € [1,00] x (1,00) and € > O there exists a
constant C = C(r, p,€) such that

IR, v - VIbllge,, < Cllwllee + wllee) ([0lle, , + 16]lce),

for every smooth scalar function 6.
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Now, turn to prove Theorem 3.(For simlicity, we just give a priori

estimate)
First, we will give some estimates for the linear transport-diffusion
model 5
0+v-VO+Do="F
[ oo (7o)
|t=0 .
We can easily get the LP estimate, for p € [1, ]
t
16(t)]e < [16°]]20 +/O (7)o dT. (18)

For p € [1,00) there exists a constant C such that

SU§2qHAq9HL%LP < Cl16°e + CllO° e llwll i, (19)
qe

for every smooth solution 6 of (TD) with f = 0.
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Applying Riesz transform R to the temperature equation we get
OtRO + v -VRO+ DRI = —[R,v - V]6. (20)
Since |D|R = 0; then the function I := w + RO satisfies
Ol +v-VI=—[R,v-V]b. (21)
According to the first part of Proposition 6
IR, v-V16llss, < CIVv]o(lollsy + 16]lee),
applied with r = 2 we have

l1R. v 9] o, S 19V les (10, , +11]25):
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Using the classical embedding 82’2 — LP which is true only for
p € [2,00)

[[R,v- V10| o < IV VIIee (1012, + [16]]1¢)-

Since div v = 0 then we get from the transport equation (21)
(0T 4+ v - VI = —[R, v - V]0)

t
IFCE) e < 170 e +/ IR, v - VI6(7)|rd7.
0

Putting together the last two estimates we get

t
Tl < HFOILer/O IVv()llee (10(7) g2, + [161]0) dT

N

t
l®lle + [16°]]2o +/0 lo()ller (10T g0, + 16°11r) .
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On the other hand, from the continuity of the Riesz transform
Proposition 4 (|R|l ey 1) and (18) ([10(t)llee < [10°]]ee + [5 1 (7)o dT)

< (IF(@)ller + RO e
< Tl + 16°] o

This leads to

t
lw()ee S IIWOHLP+H9°HLP+/O lo() e (10(T) g2, +16°] 1) d 7.
According to Gronwall lemma we get

Cllo
lw(®)llr < CoeSote 5% (22)
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Let N € N, by Bernstein inequalities and (18)

10llrge , < [SwOllzgo,, +[1(1d = Sw)bll12go_,

S 6% VN + Z [AATZIVEYRS
q=>N

2
< VN||OO| ot + Z 2q"”Aq9HL§LP'
q=>N

Using (19) (supgen 29[ 8g0l 10 < ClENe + ClOO Lo [lwll120) and p > 2
we obtain

t
> Al 5 3 26010 + 160 [ lolur)
g>N—-1 0

g>N-1

t
S 1600+ 2" [ ()l
0
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Thus, we get
t
N(—1+2
10030, S VN6 oot + 16°1p + 21260 1o /0 leo(7)|] o d.

We choose N as follows

_ [log( +fo lw(r ‘Lpd7>] )

(1—2/p)log2

Then it follows

! t
Ollss , S 10 cmrus + 160l tlog? (e+ [ f(olwar).
' 0
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CHGHL%B?)C”

Combining this estimate with (22) (||w(t)|/r < CoeSte we

get

1 clell
10m0, S 16°0erus + 6%t log (e + CoeSote " ti%%ea)
1
< Co(1+t2) + ClI6° = t]0] frgo -
t=o0,2
Thus we get for every t € R+

18l , < G+ ).
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It follows from (22) (|jw(t)|lr < coeCoteCW”L%B?,c,z)

lw(t)l[e < ®1(2). (23)

Applying (19) (supger29118g0ll1p < ClIE%o + ClI60II1ox o]l 1,0) and (23)
we get
2q||Aq9HL§LP < ®4(1), VgeN (24)

and thus
100725y = ®a(2)-

Combing with (23), we have

l(O)les + 1035 < @1(0), pE(200).  (25)
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It is not hard to see that from (24) (2] 846l,2,5 < ®1(2)) ONE Can
obtain that for every s < 1

160385, < WOl < ®a(2). (26)

Combined with Bernstein inequalities and the fact that p > 2 this

yields
1015, < ©1(0), (27)

for every e < 1 — %.
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By using the maximum principle for the transport equation (21)
(0T +v-VI=—[R,v-V]0) , we get

t
IF(E) e < [T +/O IR, v - VI0(7)| o dT
Since the function R0 satisfies the equation
(O +v-V+|D))RO=—[R,v-V]b, (28)

we get by using (18) ([|6(t)ller < 16°]10 + Jif I ()lrd7) for p = 00 that

t
IRO(t)|| < ROl +/0 IR, v - VI0(7) || dT.
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Combining the last two estimates yields
IT(E)[ + IRO(t)]] o

t
Pl + IRO°|e + 2/0 IR, v - V10(7)[| o dT

IN

A

Gt [ IR v W) 9

It follows from the second estimate of Proposition 6 (||[R,v-V]0|/z0 <
Clllwllese + llwlie)(W0llge, , +10]1e)) @nd (25)  (lla(t)]ler + 100z < ;(rt))
IIw(t)HL:c + [IRO(t) | o

Go+ [ ot limrus (1007

Co+ llwliezerr (1912, , + t16°lI2e)

t Zoo,1

+f ()l (160

N

Be , T ||9(7')HLp)dT

A

ge, + 6]l d.
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let0<e<1— % then using (27) (l6ll2ge | < ®1(2)) we get

t
lw(®)l[ e+ IRO(E) [ Lo < ¢1(t)+/0 lo(m) I (10(7) 18, + 116120 ) d 7.
Therefore we obtain by the Gronwall lemma and a new use of (27)
that
lw(t)[loe + [IRO(E)][ oo < Po(2). (29)

Let N € N to be chosen later. Using the fact that ||A,v||~ ~
279||Aqw]| 1>, we then have

(Ol < Ix@ MDDVl + D 279 Agu(t) 1
q>—N

< Ix@ MDD ()l + 2N lw(t)
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Applying the frequency localizing operator to the velocity equation
we get

t
X(@ D) =x@ D)+ [ Px2MD)o(r)dr
t
+/ Px(27N|D|)div(v ® v)(r)dT.
0
where P stands for Leray projector. From Bernstein inequalities,
Calderén-Zygmund estimate and the uniform boundness of

x(27N|DI) we get

t N2 t
/O I MD)PO) [imdr < 27N /0 10(7) o dr

< tHQOHLp.
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Using Proposition 4-(ii) (/[[DI*x(2~9|D|)R|| sy < €2%) we find

[ 1Pxe b e Eledr S 270 [ o)
The outcome is
MOl S s + ol +2 [ ()Rt + 2D
$ 2 [ ) liedr + 2Moa(

Choosing judiciously N we find

Mol < 0201+ [ Iriiar))
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From Gronwall lemma we get
V()] < 3(2). (30)
First, we need a logarithmic estimates of the transport equation
(Ot +v-V+k|D])0=f,

then we have

t
10070, < €168, + IFlluzg, ) (1 + /0 IVv(7) e d),
(31)
for p € [1, 00](Details see Theorem 4.5 in Hmidi,Keraani and
Rousset 2011).
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By using the logarithmic estimates of the equations (21) (8,F+v-vr =
~[R,v-v]o) and (28) ((8: +v-V +|D|)RI = —[R,v-V]§), we obtain

IF(®) s, +IRO e, S (Cot 1R v- 910y ) (141 Vlizi )-

(32)
Thanks to Propositions 6 (|[R. v VI0llgs, , < Clllelli + @) (105, , +
16l1ee)) + (25)(loe)llr + Nolmgy < ®1(0) (29)(l(®)llioe + [IRA(E) v <
@a(t)) and (27) (10l 5., < ®1(2)) we get

JRov - Tl g, % [ (ol + o))
(166 s, + 161} o
SPa(1).
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By easy computations we get

IVViee < (IVA 1V + > 1AV V|1

geN
S lwller + 7 1Agw] =
geN
S 0u(t) £ llw(®)llsg, - (33)

Putting together (32) and (33) leads to
lw(®)llge, , < T, , + IRO(D)lg0_,
t
<0a(0)(1+ [ lelrleg, 7).
0 :
Thus we obtain from Gronwall inequality
lw(®)ln, < @3(0). (34)
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Coming back to (33)(||Vvl[i~ < ®1(t) + lo(t)lgo ) we get
[Vv(t)|[Le < ®3(2).

Let us move to the estimate of v in the space Bgo’l. By definition
we have

Iv(®)llgr , S V()] + llw(®)llgo -

Combined with (30) (||v(t)]i= < ®3(¢)) and (34) (l(t)llgg | < ®s5(t))
this yields

(D), < ®s(2).
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Commutator Estimate

Proposition 6 (Commutator estimate)

Let v be is a smooth divergence-free vector field.
i) For every (p,r) € [2,00) X [1,00] there exists a constant
C = C(p, r) such that

IR, v - V1llgg, < ClIVVie(lllsg,, + 10]lee),

for every smooth scalar function 6.
ii) For every (r,p) € [1,00] x (1,00) and € > 0 there exists a
constant C = C(r, p,€) such that

IR, v - V10llg

00,r

< C(llwllese + llwllee) (10115, , + 101lce),

for every smooth scalar function 6.
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Proof of Commutator Estimate

The following inequality will be useful to give the proof of
Proposition 6.

Given (p, m) € [1,00]? such that p > m’ with m" the conjugate
exponent of m. Let f,g and h be three functions such that Vf €
LP,g € L™ and xh € L™ . Then,

[h+ (fg) — f(h* g)lle < lIxhll L [[VFllo gl m-
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Proof of Commutator Estimate

We split the commutator into three parts,

[R.ov-VI0 = Y [R.Sq1v - VIAgH+ D [R,Aqv-V]Sq_10
geN geN
+ D[R, Aqv- VA0

q>—1

= D g+ g+ > g

qgeN geN g>—1
= I+ 1+l
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We start with the estimate of the first term |. According to the Jif)
of Proposition 4 there exists h € § whose spectum does not meet
the origin such that

lg(x) = hg * (Sq—1v - VAGH) — Sq_1v - (hg * VAH),

where hg(x) = 299h(29x).
Applying Lemma 7 (||h+ (fg) — f(h+g)lle < [|xhll o [ VF ] 1p]lg]lm)- With
m = oo we get
lgllee < lIxhgll 2|V Sg-1v|r[|Ag VO Lo
S Vel Agfl e (35)

In the last line we've used Bernstein inequality and
([xhqllx = 279|xh] 2.
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Combined with the trivial fact
A D lg= > g
q li—ql<4
this yields

1
s, < (3 Mallin)’

q=>-1
S IVvllelfllsg, -

~

69 /82



Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

Let us move to the second term Il. As before one writes
lg(x) = hg* (Aqv-VSq-10) — Aqv - (hg * VSq-16),
and then we obtain the estimate

27 AgV V| 1p [ Sq-1V 0| 1
Vvl > 27940

Jj<q-2

Mgl[zr

IZANRZA

Combined with convolution inequalities this yields

Ilgg, < IVVlieellOlsn.
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Let us now deal with the third term Ill. Using that the divergence
of Ag4v vanishes, we rewrite Il as

= ) Rdiv(AqvAgh) — > div(Aqv RAH)
q>2 q>2
+ 3[R, Aqv - VA0
g<1
= h+ b+ 4k

Using Proposition 4 ii), (//|D*x(2~9|D])R||z(r) < C2%) we get

|A/RAiv(Aqv Ag0)|| 5 S 2N Agviliel| Ag)|1oc-

~
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Also, since AqH is supported away from zero for g > 2 then
Proposition 4 iii) (Rf =299y (29-) % f ) yields

18jdiv(Aqv RAGD) S 2 Aqv]ir[RAGH) |1
< YAgvlleellAgh -
Therefore we get

1A+ Rl S D 2N8gvielAghll

q=>j—4
S IVvilee Y 2728 1,
qeN
q>j—4

where we have again used Bernstein inequality to get the last line.
It suffices now to use convolution inequalities to get

[+ Lllsg, SIVvleellfllse, -
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For the last term J; we can write

Z [R,Aqv - V]A 0(x Z[dlvx R, Aqv]ﬁqe(x),

_1<g<1 q<1

where X belongs to D(R?). Proposition 4 ensures that div X(D)R
is a convolution operator with a kernel h satisfying

[h()| < (L +Ix))~

Details refer to see the proof of Proposition 3.1. Hmidi, Keraani
and Rousset 2011. Thus

;= Z hs (Aqv-Dg0) — Dgv - (hx Ay0).
q<1
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First of all we point out that A;J3; = 0 for j > 6, thus we just
need to estimate the low frequencies of J3. Noticing that xh be-
longs to LP" for p’ > 1 then using Lemma 7 (||h = (fg) — f(h* g)||r <
XAl [| VIl llgllm)  With m = p > 2 we obtain

1A 5lle <D lIxBll o 1AV v|e | Al e
q<1

S IVvlie Yo 18680

~1<q<1

This yields finally
1sllag, S 19Vl 6]
This completes the proof of the first part of Proposition 6.
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To estimate the terms I and II we use two facts: the first one is
|AgVul|ie = |[[Aqw]||i for all g € N. The second one is

q—2
IVSqavllie S IVA vl + 3 14;9v] i
Jj=0

S lwllee + qllwlfies

For the remainder term we do the same analysis as before except
for J3: we apply Lemma 7 with p = oo and m = p leading to
185l S D IIxBll o |AgV V]| [ Agh o
q<1
S IVl D 18¢8)e
—1<g<1
S lwlleellfffce-

This ends the proof of the Proposition. O
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General critical case

Jiu, Miao Wu and Zhang obtained the global regularity for the
general critical dissipation ao + 8 = 1.

Jiu, Quansen; Miao, Changxing; Wu, Jiahong; Zhang, Zhifei The
two-dimensional incompressible Boussinesq equations with general
critical dissipation. SIAM J. Math. Anal. 46 (2014).
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Theorem 8 (Jiu, Miao, Wu, Zhang, 2014)

Let ap < a <1 and a+ B =1, where

23 — /145
ag = 3 ~ 00132 (36)

Assume that ug € BS | (R?) with o > > and by € B3 1(R?). Then
the fractional Boussinesq has a unique global solution (u, ) satis-
fying, for any 0 < T < oo,

u e C([0, T]; B, (R?) N LY([0, T]; B {*(R?)),

6 € ([0, T]; B3 1(R)) n LY([0, T]; B31°(R?)). 0
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The authors also introduced the new quantity
G=w—-Ry0 with R, =A%,
which satisfies
0:G+u-VG+ NG =[Ra,u-V]+N"90.

The regularity of G here does not translate to the regularity on the
vorticity w in the general case, since the corresponding regularity of
R0 is not known for o < 1.

78/82



Theory on Well-posedness of Boussinesq Equations with Fractional Laplacian

L Fractional dissipation case

By obtaining a suitable estimate for [Ry, u - V]6, they obtained a
global bound for ||G||;2 when o > %. In addition, with a > %, a
global bound is also established for |G|/« when g is in the range

8 — 4«
8 —7a’

2<qg<qo=
This global bound for [|G[|s enables them to estiamte |G]|s; .
IG(Dlles . < C.

for g < @ and s < 3a — 2, and this will give a bound for part of
Vu.
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Through the temperature equation
o0 +u-Vo+No=0. (38)

They offered a different approach to gaining further regularity by 6.
Since u is determined by w through u = VA lwand w = G+R.0
, So u can be decomposed into two parts,

u=ViATlw =VIATIGH VAR =T+ v
and U is more regular in the sense that

IV = [[VVEATIG e < C|Gllgg,, < C.
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In addition, when a4+ 8 =1, v in terms of 6 can be written as
v=vViATIAn-=A) g 0.

Therefore, (38) is almost a generalized critical surface quasi-geostrophic
(SQG) type equation.
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Subcritical case

P. Constantin and V. Vicol, GFA, 2012. Global regularity for the
subcritical case by a different approach.

Theorem 9 (P. Constantin and V. Vicol 2012)

Assume that (ug, ) € S, the Schwartz class. If § > ZJ%Q then
the Boussinesq equations has a unique global smooth solution.

The proof involves the pointwise inequality for fractional Laplacian

V[P

1
VF-ANVF(x) > =A*|VF]? +
B2 MV A

Note that in this theorem o 4+ 8 > 1, a subcritical case.
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