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LAnisotropic Dissipation Case

Horizontal dissipation

Consider the IVP for the 2D Boussinesq equations with horizontal
dissipation

Oru+ (u-Vu=—Vp+ vi + 063,
V-u=0,

00 + (u-V)§ =0,

u(x,0) = wp(x), 0(x,0) = bp(x)

(11)

(1.1) has been shown to possess a unique global solution for
suitable (up, 6p) and the following theorem combines the following

results:
e Danchin and Paicu, M3AS (2011).
e Larinos, Lunasin and Titi, JDE (2013).
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Theorem 1 (R. Danchin and M. Paicu; Larinos, Lunasin and Titi )

Let ug € HY(R?) and V - up = 0. Assume wo = V x up € VL,

namely
lwolla
sup < 40
a>2 /4
Let 6p € L> N L. Then the IVP (1.1) has a unique solution (u,0)
satisfying

u € L([0,00); HY),  w € Lise(0,00); VL), w2 € Lj,c([0,00); H?),

6 € Cp([0,00); L2), 6 € L>(]0, 00); L™).

3/114



Theory on Well-posedness of Boussinesq equations

LGlobal well-posedness of Boussinesq equations in 2-dimension
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Remark: The paper of R. Danchin and M. Paicu (2011) originally
assumed that 6y € H® with s € (1/2,1) to show the uniqueness.
Later Larinos, Lunasin and Titi (2013) was able to prove the unique-
ness without this assumption.
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First, we prove the global existence of weak solutions in a very
weak functional setting via Friedriches’ Method. This method cuts
off the high frequencies and thus smooths the functions. The global
existence result can be stated as follows.

Theorem 2 (Global weak solution)

Let g € >N L™ and ug € H* and V - ug = 0. Then (1.1) has a
global weak solution (u,0) satisfying

0 € L°°([0, 00); L2 N L™),

u € L35([0,00); HY), 2 € Li,c([0, 00); H?).
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Proof. (Friedriches’ Method) Let n € N and define
12 = {f € [2(R?)|suppf C B(0,n)},

Inf = (XB(O,n)?)vv

where f and fV denotes the Fourier and the inverse Fourier trans-
forms, respectively, and xp(o,s is the characteristic function on
B(0, n). Clearly, J,f € H® = Ns>oH".
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Consider the equations

010 + JpV - (Jpudy0) = 0,
Oet + PV - (UyPu @ JyPu) = vy Pt + JyP(03),
u(x,0) = Jyuo, 6(x,0) = Jybo,
(1.2)
where P denotes the Leray projection. By the Picard theorem,
there exists T* > 0 and a solution (u, §) € C*([0, T), L2)
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Noticing that J,f = f if f € L% and PF = F if V- F =0, we have

00 + ¥ - (uh) = 0,
Oe +PIyV - (u® u) = vdu + P(0E3).

By the energy method

161122 < [I9nboll2 < |60l 2,

t
lul% + 20 /0 10xulZadt < (|luolliz + tll6o2)2-
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Taking the curl of the u-equation yields
Orw + Pdp(u - Vw) = v0xw + 0x0

and thus
t t
il + 20 /0 |0ywl3dr < /0 180 21Ol a7
t 5 C t )
<v / lowwlBdr + < / 1663
0 vV Jo

Therefore, § € L°([0, 00); L2) and u € L>=([0, T]; H') for any
T > 0. By the Picard Extension Theorem, (0, u) is global in time
and admits bounds that are uniform in n,

00" c 1°(][0,00); L), o™ e L([0, T]; HY).

9/114



Theory on Well-posedness of Boussinesq equations

LGlobal well-posedness of Boussinesq equations in 2-dimension
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In addition, it can be shown that
8.0 e L=([0, TI; H~3/?), 8™ e L>([0, T|; H7Y)

Since [2 < H™3/2 locally and H! < H! locally, the Aubin-
Lions compactness lemma then implies u(™ — u in H,éc for any
—1<L<1and 6™ —0in H,éc for any —3/2 < L < 0. We can
use these convergence to pass the limit in the weak formulation.
This completes the proof. O
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Here, we show that (1.1) has a unique local classical solution.

Theorem 1 (Unique local classical solution)

Let (ug,00) € HS x H*~1 with s > 2. Then there is T >0 and a
unique solution (u,0) € C([0, T), H* x H5~1) satisfying (1.1).

Proof. We can either use the mollifier approach as in the book of
Majda and Bertozzi or Friedriches' approach above.
part is a local priori bound. Define

The crucial

Pf=(1—AY2F or JF(E) = (1+[€2)3F(€).

Then clearly ||J5f||2 = ||| 1s-
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It follows from the vorticity equation
Orw + U - Vw = V0 qw + 0x 0

that
1d

§$||J5_1W||3 + v[|05 J* w3 = Ki + Ko,

where
Ki = /aleslerlw,

Ky =— /(Js_l(u VW) —u- VI ).
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K1 and K3 can be bounded as follows. By integration by parts,
v _ 1 _
K] < 21105 l3 + =150,
Applying the commutator estimates yields

|K2|

IN

HJsfl(u -Vw)—u- VJsfleijsflcqu
< C(IJull2llwlloo + 1M w2l Vullso) 14 ° w2

< ClVulloll 5 w3
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Similarly, we have
1d
2dt
— /(Js_l(u VO) —u-VIsr) e

175710112

IN

CllI==2 01211 ull2]16lloo + 11572 0ll2]| Vo)
< CllOlloo (I wllz + [195770113) + ClIVulloollJ 570113
Therefore, Y(t) = ||/ w]||3 + ||J5710]|3 satisfies

%Y(t) < C(L+ [0lloo + [Vulloo) Y(1).
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Since s > 2,
IVulloo < CIVullpysr < C[I7 ]2
and consequently
d
ZY(O < C(1+ 10l + VY (@) Y.

This inequality implies that 37* such that Y(t) < C for t < T*.
This completes the proof. O
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Here we establish a global bound for ||u||ys and ||6]| ys-1, which
allows us to extend the local solution in the previous subsection to
a global one.

Theorem 2 (Global classical solution)

Assume that (ug,f) € H® x HS~! with s > 2. Then (1.1) has a
unique global solution (u,8) € C([0,00), H® x H*™1).
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Proof. It suffices to obtain a global bound for (u,6) in HS x HS~1.
From the previous proof, Y(t) = ||J* 1w||3 + ||J°710]|3 satisfies

d
SV < COH Bl + IVul) V(). (13)
The trick is still to control ||Vu||~ through the following logarithmic
interpolation inequality,for o > 1,

f
17l < sup 102 g1+ 7).
q>

which proof gives later.
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In particular, for s > 2, we have

Vullq
Villeo < Csup——4/log(1l+ ||Vul|lys—
[Vull P g V9og(1+ [[Vul 1)

[Vullq
< Csup——+/log(1 + ||w]| ys=1). 1.4
N \/ g( [l s—1) (1.4)

The goal is then to show that, for any T > 0,

T
/ supMdt< 00. (1.5)
0 Va

q>2

18/114



Theory on Well-posedness of Boussinesq equations

LGlobal well-posedness of Boussinesq equations in 2-dimension

LAnist:.tropic Dissipation Case

This is accomplished through two steps. First, we have

) T 2T
lw(T)I2 +2v A |0 wl[5 dt < 7H9oH2
and, from the L9 estimate of w, 2 < g < o0,

2(g—1)
w2 < flwollZ + ftHGoH?,

2
lllg < llwollg + 4/~ t(a = 1)[[6o]lq-

Thus, we have

H l[wllq || llewollg
su <s Ooll ;2
sup 1410 < sup l0lla 1 20y ..
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. . . 2
We caution that the inequality |Vullq < %Hqu does not really
help. Instead, we use the imbedding inequality and prove in the
following Lemma, for a constant C independent of g,

||qu
sup—— < C||f||n
q>2 \/a H H 1

and the simple fact that ||Oxwl||2 = ||V Ox ul|2, we have

/Tpr%”“dr<c/Jwavwbm
0 Va ~ Jo '

q>2

i
—C/H%Mm<m.
0
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Due to the divergence-free condition Oy, 1 + Ox,u2 = 0, we also

T 0
0 ¢>2 /4

In addition, Oy, u1 = Oy U2 — w and thus

T ) T o T
/ sup”qulqutﬁ/ supHXIuZqut—i—/ sup Jo Hq dt < oo.
0 ¢>2 4 0 ¢>2 4 0 ¢>2 9

Thus we have proven (1.5). Combining (1.3), (1.4) and (1.5)
yields the desired global bound. This completes the proof of
Theorem 2. O

have
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Foro > 1,
11l s
flloo < C(o)su log (1 + ||f||He), 1.6
[[f]lee < C( )ng /4 Viog (1+ [[flne) (1.6)
|11l ea
sup < C||f|| g1, 1.7
sup 2 < Clfl (1.7

where C's are constants.
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Proof. For proving (1.6), one may split f into low and high
frequencies according to the Littlewood-Paley decomposition.
More precisely, for any g € N one may write

f=Sgf + ) Apf.
p=>q

We thus have

1Flloe < U1Sqflloe + D I1ApFll e

p=q

whence, using the Bernstein inequalities,
I7les 5+ ¢ 300 |
\/* q philL2 -

q9 p=q

]l < C
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For simplicity, we set ||| 7 := supg>» ”f%q. By o0 > 1, we get

Iflle= < ClIfllyzv/a+ 274 f] e

Now, if Cl[f||ns < |If|l zv/log(1 + [[f][He), then take g the

integer part of log(1 + ||f||y-). Otherwise, one may choose for g
the integer part of

L g ( Clfll1e )
1 g, |
o =17 \[Ifll /g /10( + [[Fllwe)

and we get the desired result (1.6).
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For any g € [2,00) and f € H*, using the Littlewood-Paley
decomposition and a Bernstein inequality enables us to write

IFllee < D 1186V

p>-—1
<C D 27| AL,
p>—1
1/2
<C > 2 [Ealrm
p>—1
< CVq—1[f[|m,
which completes the proof of inequality (1.7). O
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Here we outlines the proof of Theorem 1. It consists of two main
steps. The first step proves the existence, the second proves the

uniqueness.

To prove the existence, we first regularize the initial condition. For
€ >0, set
Jef =pexf

where p. = L po(%) with pg € C§°(R?), [g2 po(x) dx =1 and

1, if x| <3,

P=V0 i st
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Consider (1.1) with the initial data u“(x,0) = J. * up and
0¢(x,0) = Je * 0. Since, for any s > 0,

1 1
Il < € luollim, 10511 < € 6ol

where C is a constant independent of €. By Theorem 2, there
exists a unique solution

(u, 6% € C([0,00); HS x H*™1).

Since (¢, 0¢) admits a global uniform bound in H x L2,
(u€,0°) — (u,0) in H* x L? and (u, ) is a weak solution according
to Theorem 2.
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Uniqueness.
Danchin and Paicu (2011) assumed that

Op € HHNL>® with se (;,1).
Larios, Lunasin and Titi (2013) assumed that
0o € L> N L.

The essential idea is the Yudovich approach. Let (u(l),Q(l)) and
(u®,6?) be two solutions. Then the difference (1, ),

7=u® _ u(2), 0= oM) _ 9(2)’
satisfies

0l + UV Vi + - Vu® = 0u0— Vp + 06,
0.0 +u) . Vo + 1 -veR =0.
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The second equation demands too much regularity on 6. To
exchange into a variable with less regularity requirement, we
introduce

AD =) A = 9@ = (D) _ (),
Clearly, gsatisfies
O:AE + uM) V(A + T VAP =0,

The goal is to show o =0 and gz 0.
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It follows from simple energy estimates that

1d ~ ~ >, -
>+ @t =~ [ vu® 3+ [aés @
> IVEB =~ [uv.vage- [a.vac® ¢

We now estimates the terms on the right.

[8éaa = 8= [(@un +0un)ER

= _/axlfax1ﬁ2+/6Xanx1E1

1.~ 1 -
SIVER + 5110713

IN
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Integrating by parts and noticing that #(2) = A¢®), we have
_/g. VALQ¢ = /g. VEAE®D

1 - ~
< S0P Nc(lTl3 + 1VE13)-

For notational convenience, we write

le—/H-Vu(2)~L7, Jzz—/u(”-VAEE.

Clearly

2 2 2
~' D ~2_2 _ _2—=
4] < |l / IVu@|a)> % < 3% Vu@ | ,llall, ?
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We know that

vu?
175 _
p>2 P

for Cy independent of p. Also we have

~ — ~i1— -2
|t]joe < M = Cull3 ||Vu||}, 2 forany g >2and a= 2(‘7(’_1).
Therefore,

2 22
|| < GopMe |, *.

Using the simple fact that a function f(x) = xAx has the
minimum 2elog A, we have

|| <2Go (log M — log || &) | &3
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Integrating by parts yields
ko= [uV.vEag
— /u(l) . vgakakg
= —/3ku(1) : Vg@kg—/u(l) - VOKE IE
= —/aku“)-vgakg.
Therefore,
sl < [ 19u)] 0P
2 2
< IVl [ Va0 Ve,
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Since ||VE]loo < M,

2 ~2-2
CpM?» || V€[,
C(log M — log || V¢]|2) [ VE][3.

| 2|

VANRVA

Combining the estimates allows us to conclude that
X(t) = ||dl|3 + || V&3 satisfies

%XHMMIIE < CX+C (logM —log X) X,

where C's are constants.
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d

X~ CX < C(logM —log X)X

d
E(e*CfX) < Ce “f(log M —log X)X

t
X(t) < e“tX(0) + C/ e (=) (log M — log X)X d.
0

Since X(0) = 0, we have X(t) = 0 for any t > 0 by Osgood inequal-

ity (see Lemma 4 below). This completes the proof of Theorem 1.
O
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Lemma 4 (Osgood Inequality)

Let pg > 0 be a constant and a(t) > 0 be a continuous function.
Assume

mnsW+AavM@mwn

/
ar = o0.

Then po = 0 implies p =0, and pg > 0 implies that

—mmm+ﬂmwgélan

where Q(p) = fpl Wd(’r).
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In particular, the Osgood inequality applies to w(p) = plog % since

/OO ! dr
1 r(logM —logr)
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Horizontal thermal diffusion

We work on the 2D Boussinesq equations with only horizontal
diffusion

8tu + (U . V)U = —VP + 937
010 + (u - V)0 = 0y, 9, (1.8)
V-u=0,
u(x,0) = up(x), 60(x,0) = Oo(x),
where we have set the coefficient of Oy, 0 to be 1, without loss of
generality. (1.8) still possesses a unique global solution when

(uo, 6p) is in a suitable functional setting. The following Theorem
is coming from the following reference:

e Danchin and Paicu, M3AS (2011).
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Assume ug € H',wo = V X ug € L, 00 € H' N L]0 |"**00 €
L? for s € (0,3]. Then (1.8) has a unique global solution (u,0)
satisfying

ue C([0,00); HY), w e LF([0,00); L),

6 € C([0,00); H* N L),
1051120 € L5 ([0,00); L%), |8 [*7°0 € L}, ([0, 00); L?).

loc loc

Here |0y, | with 3 € R is defined in terms of its Fourier transform,

|0x 1P F(x) = / e €|61|%F (&1, £2)dErdE.
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The equations give us for free the global bounds on ||#]|;2~;~ and
||ul| 2. The first real step is to obtain a global bound for ||V@||>.
This can be established by writing the nonlinear term explicitly in
terms of the partial derivatives in different directions and fully take
advantage of the dissipation in the x-direction. The resulting esti-
mate is given by

d
S VOl + 105 VOIZ2 < B()IVOIZ,

where B(t) is integrable on [0,00). Some special consequences of
this inequality are

lw(s Tllee < €(T), Ju Tl < €(T),
where T > 0 is an arbitrarily fixed and C(T) depends on the initial

data and T.
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In fact, by the Sobolev embedding inequality

1/2 1/2
10,0]1 14 < Cll0 01115211V 05,0114,

we have

;

||ax B[, dt < C sup. ||aX 012, [ |10, V0% dt < occ.

1 L [ 1 L 0 1 L
te

It then follows from the vorticity equation that

1d

a il = [ anbulefox < o0l
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Therefore,
t
leolle < llwollze + /0 NI

t 1/4
< Jlwollus + ( / raxleu‘pw) e
0

Thus,

1/3 2/3 1/3 2/3
lulliee < [|ull 22Vl 22 < C lull2w]?7? < oo.
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Next we show that, for s € (0,1/2],
0720 € L35.(10,00); 12), 102740 € 130([0, 00); 12). (1.9)
Clearly, |0y, |10 satisfies
a1—“’6X1|1+59 - 8><1X1‘8X1 |1+50 = _|8X1 ’1+S(u : ve)

Taking the inner product with |91%]6, we find

L0, + o 0l

; / |8X1|1+S(U Vo) |8X1|1+59 dx

- / |0y, | (1 - VO) |0, |*T2°60 dx

Ox

B |((9X1u VO 4 u-V8,,0)|0y |*>*0dx.
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Since s € (0,1/2],

’g |(u V05, 0)|0 |72 0dx
X1

< lullee V001121105 117250 2
< lulle 0% VE172

Writing Ox u - VO = 0Oy, u10x, 6 + Oy, u20x,0, we have

Oy,
E ,(5X1u V0) |0 ["T20dx < |wl| 4|0 Ol 31|05 [ 20| 2
X1

/ B |aX1uQaX2916X1|1+259
X1
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In addition,

O
/ ‘a | 6)(1 u26X29|6X1 |1+2S‘9 = ’8 | U28X1 ax29|ax1 |1+259dX
X1 X1

/ Dy |° (120,,0)| D, |20 dlx
Iaxll

< ellell0g VOl 2 10w 7220 12
+HI8X1|5(L123XQ¢9)HL2Hlaxl\”s@HL2
< llZ 1105 VOIE + 5 \IWX1!2“9|!fz

+CllullFu (1020]] 2 + !\31329!\9)2,
the last inequality have used the following inequality

el i < ClFlen (el + 19r6].2)
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Combining the estimates yield, for some g € L} ([0, >0)),

loc
d 1+s912 2+s0)(12
S 10x 7Ol + 1110% 1770012 < &(2).
We thus have obtained (1.9). A special consequence is that
w € L5 ([0,00); L=).
This can be obtained by combining

t
lwollie < ool + / 106l dr
0

with the simple estimate of the following lemma.
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FE+1<2, >0, >0, then
£l < CUIf 2 + 110 flle2 + |10x P f | 2)-

Applying this lemma with s; =145, s =1, we have
t
lwllree < Jlwollre + C/ (198lliz + [[10x 1201l 12 + 1|05, 0,0 2)d T < 0.
0

Trivially, interpolating between L2 and L> yields w € L9 for
q € [2,00). More importantly,

\%
Vue Ly ([0,00);L) or  sup supm
te[0,T] g>2 q

< C(T).

This completes the part for the existence and regularity part.
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Finally we show the uniqueness. This is a consequence of the Yu-
dovich type argument. Let (u(®), (1) and (u(?,6(?)) be two solu-
tions. Then i = u™® — 4@ and § = (1) — 9 satisfy

atﬁ + U(l) NVi+0a- VU(Q) — 95)7
até + U(l) . V§ + i VQ(Z) = 8><1><1§‘

The most difficult term we would encounter in the further estimates
is

/ (72 8,0 Gx.
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One way to handle it is to use the divergence free divu = 0 and
the identity

fp = (I — 03) tiio — (I — 02) 0, 0x, i1

We shall omit further details. This completes the proof of
Theorem 3.
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Vertical dissipation and vertical thermal diffusion

2D Boussinesq equations with vertical viscosity and vertical
thermal diffusion as follows:

Ol + - Vi = —Vp+vd,i+0e
00 + 7 VO = k0

V-i=0

u(x,0) = tp(x), 6(x,0) = bp(x),

(1.10)

here o = (u, v).
The global existence and uniqueness of (1.10) were established in

e Cao Chongsheng, Wu Jiahong, Global regularity for the 2D anisotropic
Boussinesq equations with vertical dissipation. ARMA.(2013).
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The main results can be stated as follows.

Theorem 5 (Cao, Chongsheng; Wu, Jiahong, 2013)

Consider the IVP for the anisotropic Boussinesq equations with ver-
tical dissipation (1.10). Let v > 0 and k > 0. Let (up, vo,00) €

H?(R?). Then, forany T > 0, (1.10) has a unique classical solution
(u,v,0) on [0, T| satisfying

(u,v,0) € C([0, T]; H3(R?)).
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As we mentioned before, the local existence and uniqueness is not
very hard to obtain. Therefore, our effort will be devoted to proving
the global a priori H? bounds for the solution.
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e ||(u, 0)||2 estimates.

)
16(8)13 + 2+ /0 10,613 dt < [0l

]
lu(t)|Z + 20 /0 18, ull3 dt < (|luollz + ¢ [9o2)°.

o ||(u, 0)||y estimates 77
Consider the equation for w = V x &, which satisfies

Oww + 7 - Vw = v0y,w + 0x0.
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Then we have

2dt/w —I—I// W) :/8X¢9w,

but we cannot control the 9,60. Therefore, if we want to obtain a
global bound for ||w||2, then we need to combine it with the
estimate of V0.

1 d
2dt/|V9|2+/£/8yV9|2 - /ve-w-ve. (1.11)
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To make use of the dissipation in the y-direction, we write

VO - Vi VO =0,u(0x0)? + 0xv0x00,0
+ Dy udx00,0 + 9,v(9,0)>.

To bound the terms on the right, we need the following lemma.

Assume that f, g, gy, h, hy € L>(R?). Then

1 1 1 1
/ / \f g bl dxdy < C IIFll2 gl g I2 18102 IAelli.  (1.12)
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This lemma allows us to bound some of the terms suitably. For
example,

1 1 1 1
‘/@Uaﬁ@y@ < C |8y ull2 1056113 110x/01l3 10,6113 1|0x 6113

K
< 710015 + C(x) 10y ull3 190112 |8 ]l2-

Integrating by parts, we have

/8XV8X98y9 = —/9 (0xVOyy 0 + Oy vOx0)
< [[6olloc [[OxVl|2 [|0xy 012 + [|6o]|oc [|0x0]]2 [|Oxy v |2
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However, the term faxu(&ﬁ)2 can not be bounded suitably. But
if we know

i
/|ww@m<m, (1.13)
0

then we have, after integration by parts,

/®M@W :—/@M@W:/ww@ﬁ
K
ZH%@H% + C(r) [[v(t) |7 1180113

IN
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Inserting the estimates above in (53) and (1.11), we are able to
conclude that, if (1.13) holds, then

lwll + (V013 + V/(ayfv)2 + ﬁ/ |0, VO|* < C(T).

Unfortunately it appears to be extremely hard to prove (1.13).
Therefore, we have to solve this problem through a different route.
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This section presents the key ingredients in the proof as well as the
proof of Theorem 5.

Proposition 6

Assume (ug, vo, 0o) € H?. Let (u,v,0) be the corresponding
classical solution of (1.10). Then the quantity

Y(t) = lwliZn + 16132 + lw? + V6P|l
satisfies

d

GYO+ Iyl + 10,13 + [ (2 +1967) (w2 +198, )
< C (14 (160l + vz + Nluyllz + (1 + el lI3) Y(2),

where C is a constant.
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As a special consequence of this differential inequality, we conclude
that, if

.
| Il de < o,
0

then Y(t) < +o0 on [0, T].
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Let (ug, vo,00) € H?(R?) and let (u,v,0) be the corresponding
classical solution of (1.10). Then,

|| ()] 12r HV0||L2r
< + B(t 1.14
\/rlogr \/rlogr (t), ( )

where B(t) is an explicit integrable function of t € [0, 00) that
depends on v, K and the initial norm ||(uo, vo, o) H2-
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Proposition 8 (LoglLog type Sobolev inequality)
Let s > 1 and f € H5(R?). Assume that

£l

sup —— < Q.

r>2 \/rlogr

Then there exists a constant C depending on s only such that

fllr
1]l oo (m2) < C sup el
r>2/rlogr (1.15)

[log(e + [|f1l 4s(r2)) log log(e + || f]l ys(r2))]

NI
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Proof of Theorem 5: Applying Proposition 7 , 8 and using the
simple fact that ||v||2, < [|w||2, < Y(t), we obtain

a
dt

where A(t) = C (14 [|6o[l3, + lluy 13 + (1 + [ull3)l[wy3)- An
application of Gronwall’s inequality then concludes the proof of
Theorem 5.

Y(t) < A(t)Y(t)+C B?(t) Y(t) log(e+ Y(t)) loglog(e+ Y(t)),
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Proof of Proposition 7

Before we provide the real proof, we would like to understand how
a bound of this level can be obtained. For this purpose, we make

T 2
| el dt < oc.
0

IVl < V.

Recall the equation for the velocity field

the ansatz

Then we show that

{ us + uux + vy = —Px + Vlyy, (1 16)

Ve Fuvx + vy = —p, + v, +0
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Taking the inner product of the second equation in (1.16) with

v |v|?=2 and integrating by parts, we obtain

> dt/| 1> + 1/2r—1)/v3|v|2r_2
_(2r—1) /pvy ]v|2’2+/0v\v|2’2.

The last term is easy to handle and we focus on the term involving
the pressure p.

@r=1) [ oy W2 =@r=1) [plety oy

< (2r = 1) [Ipllo VI 2 vy v 2

v(2r —1)
< = IwITHE+ C@r =) el IvIz=
v(2r—1) _ 2r—2—
< = Iw M+ C@r =) el lIvils > Vil
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Then, if fOT lpll2, dt < oo,

2r—2—

> 9 IIE < Clor— 1) Il IvIET vl

would yield ||v||2, < C+/r. But unfortunately, we do not know if
fOT |pl|%, dt < co. What we can show is the following bound.
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Proposition 9

Let (ug, vo,00) € H?(R?) and let (u,v,0) be the corresponding
classical solution of (1.10). Then

II(U(l“),V(f))HZ‘JrV/0 1Cuy (), vy (I (), v(T))IIIE d7 < Ma(t),
(1.17)

lp(-5 )ll2 < Ma(2), /Ot IVp(, 72 d7 < Ms(t),  (1.18)

where My, M, and M5 are explicit smooth functions of t € [0, )
that depend on v, k and the initial norm ||(ug, vo, 60o)|| 12 -
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We also need two lemmas.

Lemma 10

Let f € HY(R?). Let R > 0. Denote by B(0, R) the ball centered
at zero with radius R and by x (o r) the characteristic function on

B(0,R). Write f = f + f with
f=F YxsorFf) and f=F(1-xpor)Ff). (1.19)

Then we have the following estimates for f and £l

(1) There exists a pure constant C independent of f and R such
that

11l Lo (r2) < C \/log R||F|| r(ra).- (1.20)
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(2) For any 2 < g < o0, there is a constant independent of g, R
and f such that

it a .7 q
[fllLamey < € —5 Ifllmwey < € —5 (Ifllm@wey  (1.21)
Ra Ra

In particular, for g = 4,

1F )l e qgey < f 11| e2)-
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Let q € [2,00). Assume that f, g, gy, hx € L2(R?) and
h € L2(9=1)(R?). Then

1-1 1 1-1 1
J VP ety < CllFlallely ey I3 1l Al
(1.22)
where C is a constant depending on q only. Two special cases of
(1.22) are

2 1 2 1
/ / £ g bl dxdy < C IIfll2 llel} g I3 8103 Al (1.23)
and

i 1 i i
/ / IF g bl dxdy < C |IFl2 gl g I3 1813 IhalE.  (1.28)

70/114



Theory on Well-posedness of Boussinesq equations

LGlobal well-posedness of Boussinesq equations in 2-dimension

LAnist:.tropic Dissipation Case

Proof of Proposition 7.

{ ur + uuy + vuy, = —py + v Uy, (125)

Ve + Uvx + vy = —p, + v vy, + 0

Taking the inner product of the second equation in (1.25) with

v |v|?=2 and integrating by parts, we obtain

2 2,,2r—2
3 dt/\v[ ’—i—y2r—1)/vyv\ r
—@r=1) [y P24 [ouppr
=(2r—1) /pvy VP24 (2r - 1) /ﬁvy \v|2’2+/0v|v]2’2
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By Holder's inequality,
[ovIvEe < 6l IvIg (1.26)

/va V1P 2 < Blloo v 2 [y v ™2

Applying Lemma 8, we have

2 1 2 1
/ﬁvy VI 2 < ClBIZ A3 v I3 I Cr=1) vy v =23 [Ty v o
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Furthermore, by Holder's inequality,

1 r(r72)
l|Iv]— ||2—HV||2, y < vl
2 2(r-2),, 2 2(r-2),, % 21 -2
r— r— r— = = — =
I=2w s = [ 1v /|v| A Yl P
Therefore,
— 2r—2 '(':12) Lyl
pvy |v| < vy v ]2,

~ 22 < 1 1815 B 1T )3
Bvy vl < Clr=1)5 1Bl 1Bl vl [Ivllar

(r—2)
XHVy| B r— IH;J%(HU )

HVy| |
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By Young's inequality and Lemma 10,

(2r=1) [y, 1v 2 < F2r = 1)y I

2 2r—2—
+ C(2r — 1)(log R) [l 7 VI3 VI3,

By Young's inequality and Lemmas 10,

(2r—1)/pvy VP2 < Z(ar 1)y N3+ € 2r - 1)(r - 1)FF

=T =
Bl 1l vy I IV vy

14 r—1112 2r—2 _r—1
< 7 @r =Dy + C(2r = 1)(r —1)zrR 2=

2r—2 4r—4 2 2r—3—
xlpll & el i vy 112 1HVH2' v

2r1
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Without loss of generality, we assume ||v|2, > 1. Inserting
(1.26),(1.27) and (1.27) in (1.26), we have

1 d
VI + 2(2r_1)/vy2|v|zr_2dx

2
< C(2r = 1)(log R) [lplIFu vy HVII2’ 2
—2

r r r— r— 2 2
+C(2r—1)(r—1)51R 3= 1HPHE4 1HPH,2411H I T IVIE T IvIE

H16l] 2 IvlE
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Especially,

d =
ZlIVIlEzr < €(2r = 1)(log R) [[plIpallvll;™
—2

+C(2r—1)(r— 1) R 3= 1HPH” (el + N 112) HVH” '
100 + vl

Taking R = (2r — 1)2r (r —1)?, integrating in time and applying
Propositions, we obtain

()72 < llvollZz + Bu(t)rlog r + Ba(t),

where By and B, are explicit integrable functions. Therefore,

H ( )||L2r < sup H 0||L2r

,22 rlogr = ;>2 rlogr

+ (Bu(t) + Ba(t)).

This completes the proof of Proposition 7.
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This subsection proves Proposition 8.
By the Littlewood-Paley decomposition, we can write

f=5Snm1f + Z Af,
J=N+1

where A; denotes the Fourier localization operator and

N
5N+1 == Z AJ
j=-1

The definitions of A; and Sy are now standard. Therefore,

1Flloo < 1Sn41flloc + D [1AjFlloo-
j:N+1
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We denote the terms on the right by / and //. By Bernstein's
inequality, for any q > 2,

2N 2N
1] <27 ||Sngifllg <27 ||f]lq-

Taking g = N, we have

f
1] < a)|flln < 4y/NTog N sup —1T U

r>2 rlogr'

By Bernstein’s inequality again, for any s > 1,

< > AAflla= Y0 279D 29| A
j=N+1 j=N+1

- C 27(N+1)(sfl) H fHst -

where C is a constant depending on s only.
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By identifying B3, with H*, we obtain
f'
[l < 4/Nlog N sup —T Uy € 2=
r>2\/rlogr

We obtain the desired inequality (1.15) by taking

N =

——logy(e + [fllme)]

where [a] denotes the largest integer less than or equal to a. g
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Our attention here focuses on the following 2D Boussinesq equa-
tions with horizontal dissipation in the vertical velocity equation and
vertical dissipation in the temperature equation

Oru + udxu + voyu+ dxp =0,

OtV + udxv + vOyv + 0y p — Oxcv = 0,

00 + udi0 + v0,0 — 9,0 = 0,

Oxu+0yv =0,

u(x,y,0) = uo(x,y), v(x,y,0)=w(xy),
0(X7y7 0) = 90(X7y)‘

Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan, J.Math. Fluid Mech.(2017)
established several global bounds, which may be useful in the even-

(1.27)

tual resolution of whether or not (1.27) is globally well-posed.
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Theorem 12 (Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan (2017))

Assume that (o, 00) € H (R?) with o >2 and V - iy = 0. Let
(i, 0) be the corresponding solution of (1.27). Then, (u,0) admits
the following global bounds, for any T >0 and t < T,

t
I+ [ 107 vl dr < C.
where C = C (T, tp, o),
2 t 2
16(£)]12 +/0 10, VO(r)||% dr < C,

where C = C (T, tp, o),
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Theorem 12 (Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan (2017))

s

/Hya 1245 9(7) H2dT§c,

/0 18,6()|2.. dr < C,
where 0 < s < % and C = C (T, i, 0o);
108(8)ll1e < €, 2< q< o0

where C = C(T,q, tp, 0o) -
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The anisotropic Sobolev inequalities:

The following anisotropic Sobolev inequalities hold, % <v <1,

1 1 1 1
/RZ |fghldxdy < C||f||2llgll;2 [10xg 72 1Al 72 10y bl 2
—1

1 1 23
/RZ |fghldxdy < C||fl|.2llgll72 1Oxgl 2 I All 2"

1
110y Al 3 -
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O+ (u, v) - Vu + 0xP = p110sct + 1120y 1,
Ov+ (u, v) - Vv +0,P =110V + 110, v + 0,
08 + (u, v) - VO = 01040 + 120,06, (1.28)
Oxu = —0,v,
(u, v)(x,¥,0) = (uo, vo)(x,y), 0O(x,y,0) = bo(x,y).
Global results to the above system:

(N pm=vr1>0, pp=va=m=mn=0.
Danchin — Paicu, 2011, M3AS;
Larios — Lunasin — Titi, 2013, JDE .(weaker space)
() m=rvo=m=m=0, u>0,1>0,

orppr = =m=m=0, v >0, v, >0.
Adhikari — Cao — Shang — Wu — Xu — Ye, 2016, JDE;
() m=1r=0, p=1,>0, m=0, n3n>0
Cao — Wu,2013, ARMA(H?); Li — Titi,2016, ARMA(L2).
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Our aim: between (—A)® and (—0x,x,)

Boussinesq equations with fractional-anisotropic dissipation:
Oeu+ (u-V)u+ ph3lu+Vp = bey,
0:0 + (u- V)0 +vAZ0 =0,
V.-u=0,
U(X, O) = UO(X)7 9(X7 0) = QO(X)7

(1.29)

where A}, = (—0x.x)"/? is the pseudodifferential operator defined
via the Fourier transform

Nyu(§) = & a(s).
Vorticity equation:
Oew + (u- V)w + pAZlw = 0.
lw(t)l[ee < [0, 0() ][ o~
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Motivation

Blow-up criterion:

-
/ IVu(-, t)||iee dt <00 <= Global regularity.
Jo

One Way: By the interpolation inequality and Biot-Savart Law:
IVulliee < C(IVull 2 + 1INV ull 2 + [NVl 2)

— X

< C([Jwllz + NG Vwll 2 + [Vl 12).-
We need estimate:

-’
/0 lw(®)ll 2 + A Va(t)ll 2 + [[Ve(t)]] 2 dt < C.
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Motivation

Blow-up criterion:

-
/ IVu(-, t)||iee dt <00 <= Global regularity.
Jo

Another way: By logarithmic Sobolev interpolation inequality:
\Y
Vil < C+ C(sup M) In <e n ||w|\Ha), Vo > 1.(1.30)
g>2 g
By the Biot-Savart law:

Vu(t ’
sup IV < oo (IO < €Tt ).
q>2 q 9-1

26+3
()l < 100l < CIVOIlL2 + AL VOl + A 26l.2)-
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Main Result

Our main Theorem is as follows:

Theorem 6 (J. Wu-Xu-Z. Ye, 2018, JMPA )

If  and B are in any one of the two ranges:

1

2442

(2) a+5>1, B> ——:

where

2
V1604 — 1603+ 2802 — 12a+ 1+ 402 —2a +1’

Bo (1.31)

then (1.29) admits a unique global solution.

88 /114



Theory on Well-posedness of Boussinesq equations
LGlobal well-posedness of Boussinesq equations in 2-dimension

LAnist:.tropic Dissipation Case

The Sketch of Proof: The basic estimates

Assume (ug, 0o) satisfies the assumptions stated in Theorem 6.
Then the corresponding solution (u,0) of (1.29) admits the
following bounds, for any t > 0,

16(8)12 + / IA26(7) 2 dr < [6o]2, (132)
lu(D)I= + / IAZ u(r) |22 dr < (lluoli2 + tll6o]l2)R1.33)
10(t)|| < ||90||L°° (1.34)

ooz +¢ [ [ 1060 e diad < ol (135

where lS"f,yr denotes the homogeneous Besov space associated with

+he vvariahle v. 89 /114
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The Sketch of Proof: The basic estimates (Remark)

In order to derive (1.35), the following lower bound involving the
fractional dissipation is also needed (see Chamorro and
Lemarié-Rieusset’s book), for any 3 € (0, 1),

// X1,X2 |0(X1,X2)| 29(X1,X2)dX1dX2
> c/ 100 5x2) [ 15 dbz.
R Bpf’p
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The Sketch of Proof: The global H'-bound for u

Based on o + 8 > 1, we first have

Proposition 1

Let a+ B > 1. Assume (up, o) satisfies the assumptions stated in
Theorem 6 and let (u,0) be the corresponding solution. Then, for
any t > 0,

t
IV u(t)|2 + /0 1A% Vu(r)|22 dr < C(t, o, B),  (1.36)

where C(t, ug, 0o) is a constant depending on t and the initial
data (uo, 6p).
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The Sketch of Proof: The global LP bound for w

When « + 8 > 1, we also obtain a global LP bound for w, which
plays an important role in the proof of a global H! bound for § in
the case when § < %

Proposition 2

Let o+ B > 1. Assume (up, o) satisfies the assumptions stated in
Theorem 6 and let (u,6) be the corresponding solution. Then, for
any 2 < p < 2(a+ f) and for any t > 0,

i
s+ [ [ )Py dbadr < €, o), (137

p,p

where C(t, ug, 0p) is a constant depending on t and the initial
data (UO, 90)
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The Sketch of Proof: The global LP bound for w (continue)

To prove this global bound (1.37), we make use of the upper
bound of the form

A%, (lwlP~2e )(-,Xz)HLX,,l%1 < Cllw(, Xz)llscr le 2)P72| e 7

where o > . Here B, denotes an |nhomogeneous Besov space
associated with the variable x;, whose norm is given by

1Fllss, = 7l + £ o

Il = SO Af|l, | vr <o
qeZ

||f(X+) ()HLP (RY)
[/Rd ‘X|d+sq dx

Q|

Q
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The Sketch of Proof: The global H* for

In the case when 8 > % the global bound holds for any ao+ 8 > 1.

Proposition 3

Let 5 > % and a+ > 1. Assume (up, 6p) satisfies the
assumptions stated in Theorem 6 and let (u, ) be the
corresponding solution. Then, for any t > 0,

IVO(t)|12 +/ N2 VO(T)|12. dT < C(t, wo, 60),  (1.38)

where C(t, ug, 0o) is a constant depending on t and the initial
data (U()7 90).
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The Sketch of Proof: The global H* for

In the complement case when 3 < % the global bound is given by
the following proposition.

Proposition 4

Assume « and 3 satisfy

1 1
§<Oé§1, 525>60, a+ > 1. (139)

Assume (ug, o) satisfies the assumptions stated in Theorem 6 and
let (u,0) be the corresponding solution. Then, for any t > 0,

Iva(t HL2+/ INLVO(r)[2 dr < C(t, uo, 60),  (1.40)

where C(t, ug, 0o) is a constant depending on t and the initial
data (up. 6p). 05 /114



Theory on Well-posedness of Boussinesq equations

LGlobal well-posedness of Boussinesq equations in 2-dimension

LAnisotropic Dissipation Case

The Sketch of Proof

In order to prove the global H! for # above, we need anisotropic
Sobolev inequalities.

Lemma 8 (anisotropic Sobolev inequality)
Assume p, q € [2, <], and 1 > % and v, > %. Then, for a
constant C = C(p,q,71,72) > 0,

1 1
| [irenande < Cliflise, el ™ 1N

1 1

><HhHLz NGBl 5 (1.41)
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The Sketch of Proof

We start with the one-dimensional Sobolev inequality

1 1
1
< 1P Y1P -
lell Q%(R) C||gH,_2 (R)”A g”[_z r)’ P €[2,00], M > 3

= HhHLz dxo

bk :

< / I£11s, gz A gu“” ]2z, d
"/21P
/ 1715, o) / Il dba) (1.42)

< [ Izl de)““’uhu
2 L)2<1

= Clfllg,e, IIgHLz “”H/\ gll”” Il 2, - (1.43)

x2 Xl

IN
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The Sketch of Proof

|h]| 24 (1.44)

1

) 2
q—2
X

INA
(@)
/N
—
=
=
.~:m
STl
Q
X

1

< / I, My, = NG, I o)’
Y29—1 1
< /uhn,.HLz ) 2 ([ INzhGa I o)™

= C|h 2”2" A2h ”2". 1.45
L
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The Sketch Proof

Lemma 9 (anisotropic Sobolev inequality)

Let p,q € [2,00]. Then,
1- 1-
1Fllg,ce, < CIAIT IASAGE T Azl )

XH/\Uz/\UlfH(l ’Yl)(l ’Yz) (1.46)

71,72 € [0,1], o1 > 0 and o, > 0 satisfy

N
Q|+~

1 1
(1—71)0125—;, (1—-)o2 =
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The Sketch Proof

Lemma 10 (anisotropic Sobolev inequality (continue))

2= (1=72)
I8, SCIFIEy NG 37

(1 —71)%

x H/\Z:”zfll"”” IAgAS FIlE ™ 0,
X2

where p is given by

02

01
= +——n(l—m)+—@1- :
p=mrnt +0271( Y2) o +02( )72
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The Sketch Proof

Lemma 11 (anisotropic Sobolev inequality (continue))

In the special case when p = q = 0o, (1.46) becomes

1—-L
”f”Loo < CHf”L2 ZC’1)( 202 HAsz”(Lz 201)202 H/\ fuzol 202)

CIADAG 72, (1.47)

where 01,0y > %
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The Sketch Proof: a > 1, 8> 3

Key bound:

Proposition 5 (H! bound of w for the case a > % and 5 > (o)

The w = V X u satisfies
IVe(e) 2 + / 1AL Tel(r)|% dT < C(t, uo, 60),  (148)

where C(t, ug, 0o) is a constant depending on t and the initial
data (UO, (90)

This key estimate allows us to show higher regularity below.
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To prove Proposition 5, we first derive a global H2-bound for u.
Taking the gradient of the vorticity equation

Ow + (u-V)w+ /\)2(1%) = O, 0,

and dotting it with Vw, we have

1d

EEHVw(t)HfquH/\%VwHZ :7/ (Vu-Vw)~deXf/ Dy, 0Awdx
R2 R2

= Ny + Ns.
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where Ny is a quadratic form and can be explicitly written as
Ny = —/ Oy U1 O WOy wdx — / Oxy U2 O, w0y wdx
R? R2

— /2 Ox, U1 Oxg WOy, wdx — /2 Ox, U2 O WOy, wdx
R R

:=Nq1 + Nio + N1z + Nig.
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Applying Lemma 8 with p=qg=2, 1=y =a > % and Holder's
inequality, we obtain

Nn,Nuscuwaupuaxluuizium uuz% uaxlwui;%\m O35
< ClIVwlll = il ™ [[A%0 uH 59wl
scuwng =l 2 I Vuu A wu
< e A8 Vel + Clwl T ALVl E 19l

where in the third line we have applied the following estimate

NGO ul| 2 = lll€l™ &l Tl 2 < €l EITE 2 = || V[ 2 -
(1.49)
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Once again, Lemma 8 and the inequalities (1.49) entail

N13<cuanwmzua@uluiziHA& uluLz Haxlwumm D75
< |Vl 2a||w||i; 2 ||Ag uH A2 ]| 25
scuwuLz 2w, 2 I VuH 1A% Vellis
<1 H/\ Vw HL2+CHw||2“ 1H/\ vuug V|2,
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Nig = —/ Ox, U1 Oy, WOy, w X
R2

_ 1
< C 100wl 2 10 u1ll12 2 AL, xlulup rrawa\|L22a A2 D,
gcnwup = s = I qu A wH
SEH/\ w72 + Cllw H““ 1HA Vu H““ 5 I Vwli?,

Combining these estimates, we obtain
Ny =— / (Vu - Vw) - Vwdx
R2

< A3 Vel + ol RS V[ 9wl
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By Holder's inequality and the interpolation inequality

[No| < CIAL Ve 2 1A V9HL2
B—1

A ||V9||L2

IN

CH/\ Vel

||/\ Vw7 + C(IA] veuiz+uveuiz)

Combining the estimates above and invoking the fact ﬁ <2,
we have

7va(t)||L2 + A% Vwlf.
4a—2
<Cllwlls ™ IS VUIIE? HIVwllZ + CUIAL VOIE + V01 2:)

4a—2

<Cllwlls™ (1 + 1A, Vull22) Vel {2 + CUIAG VOIE + 1VO]1Z2).
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Applying the Gronwall inequality lead to
t
IVale) 2 + /0 A2 Veo(r) |2 d7 < C(t,u0,00).  (1.50)

This we get a global H?-bound for u.
Now we are ready to establish the global H*-estimate.
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It follows from energy estimates that
d (03
Se (O + 10(0)I170) + 1A% ullEe + 1A% 617
<SCL+ [Vl + VO] )([[ullFs + [16]]:)

To bound ||Vul||re, we recall the interpolation inequality

1 1
—+— <2, (1.51)

Al < CQlAll2 + AL ALz + A2 A 2),
0 O

which implies that

IVulli < C ([Vullz + [NVl o + 1AVl 2)
< C (lwllez + [ A V| 2 + IV 12)
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The global H?-bound in (1.50) then yields

t
/ IV u(s) 3 ds < o0
0

This bound leads to a global bound for ||V|| . In fact, for any
q & [1,00],

t
IVWNSHV%Mwm{AIVMﬂMwM]

It is then clear that

nwwﬁﬂmmm+ﬁ<wwwn

2
et

/\319(7)”;) dr < o0

This obtain Proposition 6. O
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The Sketch Proof: a > 1, 8> 3

Proposition 6 (Higher regularity: o > % and 8 > (o)

Assume that (ug, ) € H%(R?) x H5(R?) with s > 2 and
V - ug = 0. Assume a and 3 satisfy

1
§<a§1, — > B> Bo, a+ > 1.

then the corresponding solution of (1.29) obeys the following
global bound

t
()1 + 16(2) 17 +/0 (A%, u(T) s + ING0(T) 1) d < o0,
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_ 2+v/2
The Sketch Proof: a4+ > 1, g > <%=

Assume (ug, o) satisfies the assumptions stated in Theorem 6. If
a+pB>1andfp > % then there holds

2
I o) 12, + / IN22E6(s) |2, ds < C(t, uo, B0),  (1.52)

where C(t, ug, 0o) is a constant depending on t and the initial
data.

The following fact will be used to prove (1.52), for any 5 > %
1
1A% (u- VO 2 < Cllullm (1902 + IAG VOl ). (1.53)
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_ 2+V/2
The Sketch Proof: v+ > 1, § > 22

The key bound (1.52) along with 3 > 25¥2 yields

Assume that (ug, ) € H%(R?) x H5(R?) with s > 2 and
V - ug = 0. Assume a and 3 satisfy

2442

atpzl,  p>—

Then the corresponding solution of (1.29) obeys the following
global bound

t
()1 + 116(2) 17 +/0 (1A, u(T) s + IAG () 1) d < oo,
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