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Theory on Well-posedness of Boussinesq equations

Global well-posedness of Boussinesq equations in 2-dimension

Anisotropic Dissipation Case

Horizontal dissipation

Consider the IVP for the 2D Boussinesq equations with horizontal

dissipation 
∂tu + (u · ∇)u = −∇p + νuxx + θ−→e2 ,
∇ · u = 0,

∂tθ + (u · ∇)θ = 0,

u(x , 0) = u0(x), θ(x , 0) = θ0(x)

(1.1)

(1.1) has been shown to possess a unique global solution for

suitable (u0, θ0) and the following theorem combines the following

results:

• Danchin and Paicu, M3AS (2011).

• Larinos, Lunasin and Titi, JDE (2013).
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Theorem 1 (R. Danchin and M. Paicu; Larinos, Lunasin and Titi )

Let u0 ∈ H1(R2) and ∇ · u0 = 0. Assume ω0 = ∇× u0 ∈
√
L,

namely

sup
q≥2

‖ω0‖Lq√
q

< +∞.

Let θ0 ∈ L2 ∩ L∞. Then the IVP (1.1) has a unique solution (u, θ)
satisfying

u ∈ L∞loc([0,∞);H1), ω ∈ L∞loc([0,∞);
√
L), u2 ∈ L2loc([0,∞);H2),

θ ∈ Cb([0,∞); L2), θ ∈ L∞([0,∞); L∞).
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Remark: The paper of R. Danchin and M. Paicu (2011) originally

assumed that θ0 ∈ Hs with s ∈ (1/2, 1) to show the uniqueness.

Later Larinos, Lunasin and Titi (2013) was able to prove the unique-

ness without this assumption.
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First, we prove the global existence of weak solutions in a very

weak functional setting via Friedriches’ Method. This method cuts

off the high frequencies and thus smooths the functions. The global

existence result can be stated as follows.

Theorem 2 (Global weak solution)

Let θ0 ∈ L2 ∩ L∞ and u0 ∈ H1 and ∇ · u0 = 0. Then (1.1) has a
global weak solution (u, θ) satisfying

θ ∈ L∞([0,∞); L2 ∩ L∞),

u ∈ L∞loc([0,∞);H1), u2 ∈ L2loc([0,∞);H2).
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Proof. (Friedriches’ Method) Let n ∈ N and define

L2n = {f ∈ L2(R2)| suppf̂ ⊂ B(0, n)},

Jnf = (χB(0,n)f̂ )∨,

where f̂ and f ∨ denotes the Fourier and the inverse Fourier trans-

forms, respectively, and χB(0,n) is the characteristic function on

B(0, n). Clearly, Jnf ∈ H∞ = ∩s≥0Hs .
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Consider the equations
∂tθ + Jn∇ · (JnuJnθ) = 0,

∂tu + PJn∇ · (JnPu ⊗ JnPu) = νJnP∂xxu + JnP(θ−→e2),

u(x , 0) = Jnu0, θ(x , 0) = Jnθ0,

(1.2)

where P denotes the Leray projection. By the Picard theorem,

there exists T ∗ > 0 and a solution (u, θ) ∈ C 1([0,T ), L2n)
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Noticing that Jnf = f if f ∈ L2n and PF = F if ∇ · F = 0, we have{
∂tθ + Jn∇ · (uθ) = 0,

∂tu + PJn∇ · (u ⊗ u) = ν∂xxu + P(θ−→e2).

By the energy method

‖θ‖L2 ≤ ‖Jnθ0‖2 ≤ ‖θ0‖L2 ,

‖u‖2L2 + 2ν

∫ t

0
‖∂xu‖2L2dt ≤ (‖u0‖L2 + t‖θ0‖L2)2.
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Taking the curl of the u-equation yields

∂tω + PJn(u · ∇ω) = ν∂xxω + ∂xθ

and thus

‖ω‖22 + 2ν

∫ t

0
‖∂xω‖22dτ ≤

∫ t

0
‖θ0‖2‖∂xω‖2dτ

≤ ν
∫ t

0
‖∂xω‖22dτ +

C

ν

∫ t

0
‖θ0‖22dτ.

Therefore, θ ∈ L∞([0,∞); L2) and u ∈ L∞([0,T ];H1) for any

T > 0. By the Picard Extension Theorem, (θ, u) is global in time

and admits bounds that are uniform in n,

θ(n) ∈ L∞([0,∞); L2), u(n) ∈ L∞([0,T ];H1).
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In addition, it can be shown that

∂tθ
(n) ∈ L∞([0,T ];H−3/2), ∂tu

(n) ∈ L∞([0,T ];H−1)

Since L2 ↪→ H−3/2 locally and H1 ↪→ H−1 locally, the Aubin-

Lions compactness lemma then implies u(n) → u in H L
loc for any

−1 ≤ L < 1 and θ(n) → θ in H L
loc for any −3/2 ≤ L < 0. We can

use these convergence to pass the limit in the weak formulation.

This completes the proof. �

10 / 114



Theory on Well-posedness of Boussinesq equations

Global well-posedness of Boussinesq equations in 2-dimension

Anisotropic Dissipation Case

Here, we show that (1.1) has a unique local classical solution.

Theorem 1 (Unique local classical solution)

Let (u0, θ0) ∈ Hs × Hs−1 with s > 2. Then there is T > 0 and a
unique solution (u, θ) ∈ C ([0,T ),Hs × Hs−1) satisfying (1.1).

Proof. We can either use the mollifier approach as in the book of

Majda and Bertozzi or Friedriches’ approach above. The crucial

part is a local priori bound. Define

Js f = (1−∆)s/2f or Ĵ s f (ξ) = (1 + |ξ|2)
s
2 f̂ (ξ).

Then clearly ‖Js f ‖L2 = ‖f ‖Hs .
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It follows from the vorticity equation

∂tω + u · ∇ω = ν∂x1x1ω + ∂x1θ

that
1

2

d

dt
‖J s−1ω‖22 + ν‖∂x1J s−1ω‖22 = K1 + K2,

where

K1 =

∫
∂x1J

s−1θJ s−1ω,

K2 = −
∫

(J s−1(u · ∇ω)− u · ∇J s−1ω)J s−1ω.
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K1 and K2 can be bounded as follows. By integration by parts,

|K1| ≤
ν

2
‖∂x1J s−1ω‖22 +

1

2ν
‖J s−1θ‖22.

Applying the commutator estimates yields

|K2| ≤ ‖J s−1(u · ∇ω)− u · ∇J s−1w‖2‖J s−1ω‖2
≤ C (‖J su‖2‖ω‖∞ + ‖J s−1ω‖2‖∇u‖∞)‖J s−1ω‖2
≤ C ‖∇u‖∞‖J s−1w‖22.
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Similarly, we have

1

2

d

dt
‖J s−1θ‖22

= −
∫

(J s−1(u · ∇θ)− u · ∇J s−1θ)J s−1θ

≤ C‖J s−1θ‖2(‖J su‖2‖θ‖∞ + ‖J s−1θ‖2‖∇u‖∞)

≤ C‖θ‖∞(‖J s−1ω‖22 + ‖J s−1θ‖22) + C‖∇u‖∞‖J s−1θ‖22

Therefore, Y (t) = ‖J s−1ω‖22 + ‖J s−1θ‖22 satisfies

d

dt
Y (t) ≤ C (1 + ‖θ‖∞ + ‖∇u‖∞) Y (t).
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Since s > 2,

‖∇u‖∞ ≤ C‖∇u‖Hs−1 ≤ C‖J s−1ω‖2.

and consequently

d

dt
Y (t) ≤ C

(
1 + ‖θ‖∞ +

√
Y (t)

)
Y (t).

This inequality implies that ∃T ∗ such that Y (t) ≤ C for t < T ∗.

This completes the proof. �
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Here we establish a global bound for ‖u‖Hs and ‖θ‖Hs−1 , which

allows us to extend the local solution in the previous subsection to

a global one.

Theorem 2 (Global classical solution)

Assume that (u0, θ0) ∈ Hs × Hs−1 with s > 2. Then (1.1) has a
unique global solution (u, θ) ∈ C ([0,∞),Hs × Hs−1).
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Proof. It suffices to obtain a global bound for (u, θ) in Hs × Hs−1.

From the previous proof, Y (t) = ‖J s−1ω‖22 + ‖J s−1θ‖22 satisfies

d

dt
Y (t) ≤ C (1 + ‖θ‖∞ + ‖∇u‖∞)Y (t). (1.3)

The trick is still to control ‖∇u‖∞ through the following logarithmic

interpolation inequality,for σ > 1,

‖f ‖∞ ≤ sup
q≥2

‖f ‖Lq√
q

√
log(1 + ‖f ‖Hσ).

which proof gives later.
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In particular, for s > 2, we have

‖∇u‖∞ ≤ C sup
q≥2

‖∇u‖q√
q

√
log(1 + ‖∇u‖Hs−1)

≤ C sup
q≥2

‖∇u‖q√
q

√
log(1 + ‖ω‖Hs−1). (1.4)

The goal is then to show that, for any T > 0,∫ T

0
sup
q≥2

‖∇u‖q√
q

dt <∞. (1.5)
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This is accomplished through two steps. First, we have

‖ω(T )‖22 + 2ν

∫ T

0
‖∂x1ω‖22 dt ≤

2T

ν
‖θ0‖22

and, from the Lq estimate of ω, 2 ≤ q <∞,

‖ω‖2q ≤ ‖ω0‖2q +
2(q − 1)

ν
t‖θ0‖2q

‖ω‖q ≤ ‖ω0‖q +

√
2

ν
t(q − 1)‖θ0‖q.

Thus, we have

sup
q≥2

‖ω‖q√
q
≤ sup

q≥2

‖ω0‖q√
q

+

√
2t

ν
‖θ0‖L2∩L∞ .
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We caution that the inequality ‖∇u‖q ≤ c q2

q−1‖ω‖q does not really

help. Instead, we use the imbedding inequality and prove in the

following Lemma, for a constant C independent of q,

sup
q≥2

‖f ‖q√
q
≤ C ‖f ‖H1

and the simple fact that ‖∂x1ω‖2 = ‖∇∂x1u‖2, we have∫ T

0
sup
q≥2

‖∂x1u‖q√
q

dt ≤ C

∫ T

0
‖∂x1∇u‖2dt

= C

∫ T

0
‖∂x1ω‖2dt <∞.
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Due to the divergence-free condition ∂x1u1 + ∂x2u2 = 0, we also

have ∫ T

0
sup
q≥2

‖∂x2u2‖q√
q

dt <∞.

In addition, ∂x2u1 = ∂x1u2 − ω and thus∫ T

0
sup
q≥2

‖∂x2u1‖q√
q

dt ≤
∫ T

0
sup
q≥2

‖∂x1u2‖q√
q

dt+

∫ T

0
sup
q≥2

‖ω‖q√
q

dt <∞.

Thus we have proven (1.5). Combining (1.3), (1.4) and (1.5)

yields the desired global bound. This completes the proof of

Theorem 2. �
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Lemma 3

For σ > 1,

‖f ‖∞ ≤ C (σ) sup
q≥2

‖f ‖Lq√
q

√
log (1 + ‖f ‖Hσ), (1.6)

sup
q≥2

‖f ‖Lq√
q
≤ C‖f ‖H1 , (1.7)

where C’s are constants.
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Proof. For proving (1.6), one may split f into low and high

frequencies according to the Littlewood-Paley decomposition.

More precisely, for any q ∈ N one may write

f = Sqf +
∑
p≥q

∆pf .

We thus have

‖f ‖L∞ ≤ ‖Sqf ‖L∞ +
∑
p≥q
‖∆pf ‖L∞ ,

whence, using the Bernstein inequalities,

‖f ‖L∞ ≤ C
‖f ‖Lq√

q

√
q + C

∑
p≥q

2p ‖∆pf ‖L2 .
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For simplicity, we set ‖f ‖√L := supq≥2
‖f ‖Lq√

q . By σ > 1, we get

‖f ‖L∞ ≤ C‖f ‖√L
√
q + C2q(1−σ)‖f ‖Hσ .

Now, if C‖f ‖Hσ ≤ ‖f ‖√L
√

log(1 + ‖f ‖Hσ), then take q the

integer part of log(1 + ‖f ‖Hσ). Otherwise, one may choose for q

the integer part of

1

σ − 1
log2

(
C‖f ‖Hσ

‖f ‖√L
√

log(1 + ‖f ‖Hσ)

)
,

and we get the desired result (1.6).
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For any q ∈ [2,∞) and f ∈ H1, using the Littlewood-Paley

decomposition and a Bernstein inequality enables us to write

‖f ‖Lq ≤
∑
p≥−1

‖∆pv‖Lq

≤ C
∑
p≥−1

2−2p/q2p ‖∆pv‖L2

≤ C

∑
p≥−1

2−4p/q

1/2

‖f ‖H1

≤ C
√
q − 1‖f ‖H1 ,

which completes the proof of inequality (1.7). �
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Here we outlines the proof of Theorem 1. It consists of two main

steps. The first step proves the existence, the second proves the

uniqueness.

To prove the existence, we first regularize the initial condition. For

ε > 0, set

Jεf = ρε ∗ f

where ρε = 1
ε2
ρ0( xε ) with ρ0 ∈ C∞0 (R2),

∫
R2 ρ0(x) dx = 1 and

ρ(x) =

{
1, if |x | ≤ 1

2 ,

0, if |x | > 1.
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Consider (1.1) with the initial data uε(x , 0) = Jε ∗ u0 and

θε(x , 0) = Jε ∗ θ0. Since, for any s > 0,

‖uε0‖Hs ≤ C
1

εs−1
‖u0‖H1 , ‖θε0‖Hs ≤ C

1

εs
‖θ0‖L2 ,

where C is a constant independent of ε. By Theorem 2, there

exists a unique solution

(uε, θε) ∈ C ([0,∞);Hs × Hs−1).

Since (uε, θε) admits a global uniform bound in H1 × L2,

(uε, θε) ⇀ (u, θ) in H1 × L2 and (u, θ) is a weak solution according

to Theorem 2.
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Uniqueness.

Danchin and Paicu (2011) assumed that

θ0 ∈ Hs ∩ L∞ with s ∈
(

1

2
, 1

)
.

Larios, Lunasin and Titi (2013) assumed that

θ0 ∈ L2 ∩ L∞.

The essential idea is the Yudovich approach. Let (u(1), θ(1)) and

(u(2), θ(2)) be two solutions. Then the difference (ũ, θ̃),

ũ = u(1) − u(2), θ̃ = θ(1) − θ(2),

satisfies{
∂t ũ + u(1) · ∇ũ + ũ · ∇u(2) = ∂xx ũ −∇p̃ + θ̃~e2,

∂t θ̃ + u(1) · ∇θ̃ + ũ · ∇θ(2) = 0.
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The second equation demands too much regularity on θ. To

exchange into a variable with less regularity requirement, we

introduce

∆ξ(1) = θ(1), ∆ξ(2) = θ(2), ξ̃ = ξ(1) − ξ(2).

Clearly, ξ̃ satisfies

∂t∆ξ̃ + u(1) · ∇(∆ξ̃) + ũ · ∇∆ξ(2) = 0.

The goal is to show ũ ≡ 0 and ξ̃ ≡ 0.
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It follows from simple energy estimates that

1

2

d

dt
‖ũ‖22 + ‖∂x ũ‖22 = −

∫
ũ · ∇u(2) · ũ +

∫
∆ξ̃~e2 · ũ,

1

2

d

dt
‖∇ξ̃‖22 = −

∫
u(1) · ∇∆ξ̃ ξ̃ −

∫
ũ · ∇∆ξ(2) ξ̃.

We now estimates the terms on the right.∫
∆ξ̃ ~e2 · ũ =

∫
∆ξ̃ ũ2 =

∫
(∂x1x1 + ∂x2x2)ξ̃ ũ2

= −
∫
∂x1 ξ̃∂x1 ũ2 +

∫
∂x2 ξ̃∂x1 ũ1

≤ 1

2
‖∇ξ̃‖22 +

1

2
‖∂x1 ũ‖22.
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Integrating by parts and noticing that θ(2) = ∆ξ(2), we have

−
∫

ũ · ∇∆ξ(2)ξ̃ =

∫
ũ · ∇ξ̃∆ξ(2)

≤ 1

2
‖θ(2)‖∞(‖ũ‖22 + ‖∇ξ̃‖22).

For notational convenience, we write

J1 = −
∫

ũ · ∇u(2) · ũ, J2 = −
∫

u(1) · ∇∆ξ̃ ξ̃.

Clearly

|J1| ≤ ‖ũ‖
2
p
∞

∫
|∇u(2)||ũ|2−

2
p ≤ ‖ũ‖

2
p
∞‖∇u(2)‖p‖ũ‖

2− 2
p

2
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We know that

sup
p≥2

‖∇u(2)‖p
p

≤ C0

for C0 independent of p. Also we have

‖ũ‖∞ ≤ M ≡ C ‖ũ‖a2 ‖∇ũ‖1−aq for any q > 2 and a = q−2
2(q−1) .

Therefore,

|J1| ≤ C0 pM
2
p ‖ũ‖

2− 2
p

2 .

Using the simple fact that a function f (x) = xA
2
x has the

minimum 2e logA, we have

|J1| ≤ 2C0 (logM − log ‖ũ‖2)‖ũ‖22.
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Integrating by parts yields

J2 =

∫
u(1) · ∇ξ̃ ∆ξ̃

=

∫
u(1) · ∇ξ̃ ∂k∂k ξ̃

= −
∫
∂ku

(1) · ∇ξ̃ ∂k ξ̃ −
∫

u(1) · ∇∂k ξ̃ ∂k ξ̃

= −
∫
∂ku

(1) · ∇ξ̃ ∂k ξ̃.

Therefore,

|J2| ≤
∫
|∇u(1)| |∇ξ̃|2

≤ ‖∇ξ̃‖
2
p
∞

∫
|∇u(1)||∇ξ̃|2−

2
p .
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Since ‖∇ξ̃‖∞ ≤ M,

|J2| ≤ CpM
2
p ‖∇ξ̃‖

2− 2
p

2

≤ C (logM − log ‖∇ξ̃‖2) ‖∇ξ̃‖22.

Combining the estimates allows us to conclude that

X (t) = ‖ũ‖22 + ‖∇ξ̃‖22 satisfies

d

dt
X + ‖∂x ũ‖22 ≤ CX + C (logM − logX ) X ,

where C ’s are constants.
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d

dt
X − C X ≤ C (logM − logX )X

d

dt
(e−C tX ) ≤ Ce−C t(logM − logX )X

X (t) ≤ eC tX (0) + C

∫ t

0
eC (t−τ)(logM − logX )X dτ.

Since X (0) = 0, we have X (t) ≡ 0 for any t > 0 by Osgood inequal-

ity (see Lemma 4 below). This completes the proof of Theorem 1.

�
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Lemma 4 (Osgood Inequality)

Let ρ0 ≥ 0 be a constant and α(t) ≥ 0 be a continuous function.
Assume

ρ(t) ≤ ρ0 +

∫ t

0
α(τ)w(ρ(τ))dτ,

where w satisfies ∫ ∞
1

1

w(r)
dr =∞.

Then ρ0 = 0 implies ρ ≡ 0, and ρ0 > 0 implies that

−Ω(ρ(t)) + Ω(ρ0) ≤
∫ t

0
α(τ)dτ,

where Ω(ρ) =
∫ 1
ρ

dr
w(r) .
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In particular, the Osgood inequality applies to w(ρ) = ρ log M
ρ since∫ ∞

1

1

r(logM − log r)
dr =∞.

37 / 114



Theory on Well-posedness of Boussinesq equations

Global well-posedness of Boussinesq equations in 2-dimension

Anisotropic Dissipation Case

Horizontal thermal diffusion

We work on the 2D Boussinesq equations with only horizontal

diffusion 
∂tu + (u · ∇)u = −∇p + θ−→e2 ,
∂tθ + (u · ∇)θ = ∂x1x1θ,

∇ · u = 0,

u(x , 0) = u0(x), θ(x , 0) = θ0(x),

(1.8)

where we have set the coefficient of ∂x1x1θ to be 1, without loss of

generality. (1.8) still possesses a unique global solution when

(u0, θ0) is in a suitable functional setting. The following Theorem

is coming from the following reference:

• Danchin and Paicu, M3AS (2011).
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Theorem 3

Assume u0 ∈ H1, ω0 = ∇ × u0 ∈ L∞, θ0 ∈ H1 ∩ L∞, |∂x1 |1+sθ0 ∈
L2 for s ∈ (0, 12 ]. Then (1.8) has a unique global solution (u, θ)
satisfying

u ∈ C ([0,∞);H1), ω ∈ L∞loc([0,∞); L∞),

θ ∈ C ([0,∞);H1 ∩ L∞),

|∂x1 |1+sθ ∈ L∞loc([0,∞); L2), |∂x1 |2+sθ ∈ L2loc([0,∞); L2).

Here |∂x1 |β with β ∈ R is defined in terms of its Fourier transform,

|∂x1 |βf (x) =

∫
e ix ·ξ|ξ1|β f̂ (ξ1, ξ2)dξ1dξ2.
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The equations give us for free the global bounds on ‖θ‖L2∩L∞ and

‖u‖H1 . The first real step is to obtain a global bound for ‖∇θ‖2.

This can be established by writing the nonlinear term explicitly in

terms of the partial derivatives in different directions and fully take

advantage of the dissipation in the x-direction. The resulting esti-

mate is given by

d

dt
‖∇θ‖2L2 + ‖∂x1∇θ‖2L2 ≤ B(t)‖∇θ‖2L2 ,

where B(t) is integrable on [0,∞). Some special consequences of

this inequality are

‖ω(·,T )‖L4 ≤ C (T ), ‖u(·,T )‖L∞ ≤ C (T ),

where T > 0 is an arbitrarily fixed and C (T ) depends on the initial

data and T .
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In fact, by the Sobolev embedding inequality

‖∂x1θ‖L4 ≤ C‖∂x1θ‖
1/2
L2
‖∇∂x1θ‖

1/2
L2
,

we have∫ T

0
‖∂x1θ‖4L4 dt ≤ C sup

t∈[0,T ]
‖∂x1θ‖2L2

∫ T

0
‖∂x1∇θ‖2L2 dt <∞.

It then follows from the vorticity equation that

1

4

d

dt
‖ω‖4L4 =

∫
∂x1θω|ω|2dx ≤ ‖∂x1θ‖L4‖ω‖3L4 .
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Therefore,

‖ω‖L4 ≤ ‖ω0‖L4 +

∫ t

0
‖∂x1θ‖L4dτ

≤ ‖ω0‖L4 +

(∫ t

0
‖∂x1θ‖4L4dτ

)1/4

t3/4.

Thus,

‖u‖L∞ ≤ ‖u‖
1/3
L2
‖∇u‖2/3

L4
≤ C ‖u‖1/3

L2
‖ω‖2/3

L4
<∞.
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Next we show that, for s ∈ (0, 1/2],

|∂x1 |1+sθ ∈ L∞loc([0,∞); L2), |∂x1 |2+sθ ∈ L2loc([0,∞); L2). (1.9)

Clearly, |∂x1 |1+sθ satisfies

∂t |∂x1 |1+sθ − ∂x1x1 |∂x1 |1+sθ = −|∂x1 |1+s(u · ∇θ).

Taking the inner product with |∂1+s
x1 |θ, we find

1

2

d

dt
‖|∂x1 |1+sθ‖2L2 + ‖|∂x1 |2+sθ‖2L2

=−
∫
|∂x1 |1+s(u · ∇θ) |∂x1 |1+sθ dx

=−
∫
|∂x1 |(u · ∇θ) |∂x1 |1+2sθ dx

=

∫
∂x1
|∂x1 |

(∂x1u · ∇θ + u · ∇∂x1θ)|∂x1 |1+2sθdx .
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Since s ∈ (0, 1/2], ∫
∂x1
|∂x1 |

(u · ∇∂x1θ)|∂x1 |1+2sθdx

≤ ‖u‖L∞‖∇∂x1θ‖L2‖|∂x1 |1+2sθ‖L2
≤ ‖u‖L∞‖∂x1∇θ‖2L2 .

Writing ∂x1u · ∇θ = ∂x1u1∂x1θ + ∂x1u2∂x2θ, we have∫
∂x1
|∂x1 |

(∂x1u · ∇θ) |∂x1 |1+2sθdx ≤ ‖ω‖L4‖∂x1θ‖L4‖|∂x1 |1+2sθ‖L2

+

∫
∂x1
|∂x1 |

∂x1u2∂x2θ|∂x1 |1+2sθ.
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In addition,∫
∂x1
|∂x1 |

∂x1u2∂x2θ|∂x1 |1+2sθ = −
∫

∂x1
|∂x1 |

u2∂x1∂x2θ|∂x1 |1+2sθdx

−
∫

∂x1
|∂x1 |
|∂x1 |s(u2∂x2θ)|∂x1 |2+sθdx

≤ ‖u2‖L∞‖∂x1∇θ‖L2 ‖|∂x1 |1+2sθ‖L2
+‖|∂x1 |s(u2∂x2θ)‖L2‖|∂x1 |2+sθ‖L2

≤ ‖u2‖2L∞‖∂x1∇θ‖2L2 +
1

4
‖|∂x1 |2+sθ‖2L2

+C‖u‖2H1(‖∂2θ‖L2 + ‖∂1∂2θ‖L2)2,

the last inequality have used the following inequality

‖fg‖
L2x2 (H

1/2
x1

)
≤ C‖f ‖H1(‖g‖L2 + ‖∂1g‖L2).
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Combining the estimates yield, for some g ∈ L1loc([0,∞)),

d

dt
‖|∂x1 |1+sθ‖2L2 + ‖|∂x1 |2+sθ‖2L2 ≤ g(t).

We thus have obtained (1.9). A special consequence is that

ω ∈ L∞loc([0,∞); L∞).

This can be obtained by combining

‖ω‖L∞ ≤ ‖ω0‖L∞ +

∫ t

0
‖∂x1θ‖L∞dτ

with the simple estimate of the following lemma. ‘
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Lemma 4

If 1
s1

+ 1
s2
< 2, s1 > 0, s2 > 0, then

‖f ‖L∞ ≤ C (‖f ‖L2 + ‖|∂x1 |s1f ‖L2 + ‖|∂x2 |s2f ‖L2).

Applying this lemma with s1 = 1 + s, s2 = 1, we have

‖ω‖L∞ ≤ ‖ω0‖L∞ + C

∫ t

0

(‖∂x1θ‖L2 + ‖|∂x1 |2+sθ‖L2 + ‖∂x1∂x2θ‖L2)dτ <∞.

Trivially, interpolating between L2 and L∞ yields ω ∈ Lq for

q ∈ [2,∞). More importantly,

∇u ∈ L∞loc([0,∞); L) or sup
t∈[0,T ]

sup
q≥2

‖∇u‖Lq

q
≤ C (T ).

This completes the part for the existence and regularity part.
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Finally we show the uniqueness. This is a consequence of the Yu-

dovich type argument. Let (u(1), θ(1)) and (u(2), θ(2)) be two solu-

tions. Then ũ = u(1) − u(2) and θ̃ = θ(1) − θ(2) satisfy{
∂t ũ + u(1) · ∇ũ + ũ · ∇u(2) = θ−→e2 ,
∂t θ̃ + u(1) · ∇θ̃ + ũ · ∇θ(2) = ∂x1x1 θ̃.

The most difficult term we would encounter in the further estimates

is ∫
ũ2 ∂x2θ

(2) θ̃dx .
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One way to handle it is to use the divergence free divu = 0 and

the identity

ũ2 = (I − ∂2x2)−1ũ2 − (I − ∂2x2)−1∂x2∂x1 ũ1.

We shall omit further details. This completes the proof of

Theorem 3.
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Vertical dissipation and vertical thermal diffusion

2D Boussinesq equations with vertical viscosity and vertical

thermal diffusion as follows:
∂t~u + ~u · ∇~u = −∇p + ν∂yy ~u + θ−→e2
∂tθ + ~u · ∇θ = κ∂yyθ

∇ · ~u = 0

~u(x , 0) = ~u0(x), θ(x , 0) = θ0(x),

(1.10)

here ~u = (u, v).

The global existence and uniqueness of (1.10) were established in

• Cao Chongsheng, Wu Jiahong, Global regularity for the 2D anisotropic

Boussinesq equations with vertical dissipation. ARMA.(2013).
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The main results can be stated as follows.

Theorem 5 (Cao, Chongsheng; Wu, Jiahong, 2013)

Consider the IVP for the anisotropic Boussinesq equations with ver-
tical dissipation (1.10). Let ν > 0 and κ > 0. Let (u0, v0, θ0) ∈
H2(R2). Then, for any T > 0, (1.10) has a unique classical solution
(u, v , θ) on [0,T ] satisfying

(u, v , θ) ∈ C ([0,T ];H2(R2)).
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As we mentioned before, the local existence and uniqueness is not

very hard to obtain. Therefore, our effort will be devoted to proving

the global a priori H2 bounds for the solution.
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• ‖(u, θ)‖L2 estimates.

‖θ(t)‖22 + 2κ

∫ T

0
‖∂yθ‖22 dt ≤ ‖θ0‖22,

‖u(t)‖22 + 2ν

∫ T

0
‖∂yu‖22 dt ≤ (‖u0‖2 + t ‖θ0‖2)2.

• ‖(u, θ)‖H1 estimates ??

Consider the equation for ω = ~∇× ~u, which satisfies

∂tω + ~u · ∇ω = ν∂yyω + ∂xθ.
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Then we have

1

2

d

dt

∫
ω2 + ν

∫
(∂yω)2 =

∫
∂xθω,

but we cannot control the ∂xθ. Therefore, if we want to obtain a

global bound for ‖ω‖2, then we need to combine it with the

estimate of ∇θ.

1

2

d

dt

∫
|∇θ|2 + κ

∫
|∂y∇θ|2 = −

∫
∇θ · ∇~u · ∇θ. (1.11)
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To make use of the dissipation in the y -direction, we write

∇θ · ∇~u · ∇θ =∂xu(∂xθ)2 + ∂xv∂xθ∂yθ

+ ∂yu∂xθ∂yθ + ∂yv(∂yθ)2.

To bound the terms on the right, we need the following lemma.

Lemma 5

Assume that f , g , gy , h, hx ∈ L2(R2). Then∫∫
|f g h| dxdy ≤ C ‖f ‖2 ‖g‖

1
2
2 ‖gy‖

1
2
2 ‖h‖

1
2
2 ‖hx‖

1
2
2 . (1.12)
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This lemma allows us to bound some of the terms suitably. For

example,∣∣∣∣∫ ∂yu∂xθ∂yθ

∣∣∣∣ ≤ C ‖∂yu‖2 ‖∂xθ‖
1
2
2 ‖‖∂xyθ‖

1
2
2 ‖∂yθ‖

1
2
2 ‖∂xyθ‖

1
2
2

≤ κ

4
‖∂xyθ‖22 + C (κ) ‖∂yu‖22 ‖∂xθ‖2 ‖∂yθ‖2.

Integrating by parts, we have∫
∂xv∂xθ∂yθ = −

∫
θ (∂xv∂xyθ + ∂xyv∂xθ)

≤ ‖θ0‖∞ ‖∂xv‖2 ‖∂xyθ‖2 + ‖θ0‖∞ ‖∂xθ‖2 ‖∂xyv‖2
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However, the term
∫
∂xu (∂xθ)2 can not be bounded suitably. But

if we know ∫ T

0
‖v(t)‖2L∞ dt <∞, (1.13)

then we have, after integration by parts,∫
∂xu (∂xθ)2 = −

∫
∂yv (∂xθ)2 =

∫
v∂xθ ∂xyθ

≤ κ

4
‖∂xyθ‖22 + C (κ) ‖v(t)‖2L∞ ‖∂xθ‖22.
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Inserting the estimates above in (53) and (1.11), we are able to

conclude that, if (1.13) holds, then

‖ω‖22 + ‖∇θ‖22 + ν

∫
(∂yω)2 + κ

∫
|∂y∇θ|2 ≤ C (T ).

Unfortunately it appears to be extremely hard to prove (1.13).

Therefore, we have to solve this problem through a different route.
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This section presents the key ingredients in the proof as well as the

proof of Theorem 5.

Proposition 6

Assume (u0, v0, θ0) ∈ H2. Let (u, v , θ) be the corresponding
classical solution of (1.10). Then the quantity

Y (t) = ‖ω‖2H1 + ‖θ‖2H2 + ‖ω2 + |∇θ|2‖22

satisfies

d

dt
Y (t) + ‖ωy‖2H1 + ‖θy‖2H2 +

∫
(ω2 + |∇θ|2)

(
ω2 + |∇θy |2

)
≤ C

(
1 + ‖θ0‖2∞ + ‖v‖2∞ + ‖uy‖22 + (1 + ‖u‖22)‖vy‖22

)
Y (t),

where C is a constant.
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As a special consequence of this differential inequality, we conclude

that, if ∫ T

0
‖v(t)‖2L∞ dt <∞,

then Y (t) < +∞ on [0,T ].
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Proposition 7

Let (u0, v0, θ0) ∈ H2(R2) and let (u, v , θ) be the corresponding
classical solution of (1.10). Then,

sup
r≥2

‖v(t)‖L2r√
r log r

≤ sup
r≥2

‖v0‖L2r√
r log r

+ B(t), (1.14)

where B(t) is an explicit integrable function of t ∈ [0,∞) that
depends on ν, κ and the initial norm ‖(u0, v0, θ0)‖H2 .

.
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Proposition 8 (LogLog type Sobolev inequality)

Let s > 1 and f ∈ Hs(R2). Assume that

sup
r≥2

‖f ‖r√
r log r

<∞.

Then there exists a constant C depending on s only such that

‖f ‖L∞(R2) ≤ C sup
r≥2

‖f ‖r√
r log r[

log(e + ‖f ‖Hs(R2)) log log(e + ‖f ‖Hs(R2))
] 1
2 .

(1.15)
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Proof of Theorem 5: Applying Proposition 7 , 8 and using the

simple fact that ‖v‖2H2 ≤ ‖ω‖2H1 ≤ Y (t), we obtain

d

dt
Y (t) ≤ A(t)Y (t)+C B2(t)Y (t) log(e+Y (t)) log log(e+Y (t)),

where A(t) = C
(
1 + ‖θ0‖2∞ + ‖uy‖22 + (1 + ‖u‖22)‖vy‖22

)
. An

application of Gronwall’s inequality then concludes the proof of

Theorem 5.
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Proof of Proposition 7

Before we provide the real proof, we would like to understand how

a bound of this level can be obtained. For this purpose, we make

the ansatz ∫ T

0
‖p‖2∞ dt <∞.

Then we show that

‖v‖L2r ≤ C
√
r .

Recall the equation for the velocity field{
ut + uux + vuy = −px + ν uyy ,
vt + uvx + vvy = −py + ν vyy + θ

(1.16)
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Taking the inner product of the second equation in (1.16) with

v |v |2r−2 and integrating by parts, we obtain

1

2r

d

dt

∫
|v |2r + ν(2r − 1)

∫
v2y |v |2r−2

= (2r − 1)

∫
p vy |v |2r−2 +

∫
θ v |v |2r−2.

The last term is easy to handle and we focus on the term involving

the pressure p.

(2r − 1)

∫
p vy |v |2r−2 = (2r − 1)

∫
p |v |r−1 vy |v |r−1

≤ (2r − 1) ‖p‖∞ ‖|v |r−1‖2 ‖vy |v |r−1‖2

≤ ν(2r − 1)

4
‖vy |v |r−1‖22 + C (2r − 1) ‖p‖2∞ ‖v‖2r−22r−2

≤ ν(2r − 1)

4
‖vy |v |r−1‖22 + C (2r − 1) ‖p‖2∞ ‖v‖

2
r−1

2 ‖v‖
2r−2− 2

r−1

2r .
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Then, if
∫ T
0 ‖p‖

2
∞ dt <∞,

1

2r

d

dt
‖v‖2r2r ≤ C (2r − 1) ‖p‖2∞ ‖v‖

2
r−1

2 ‖v‖
2r−2− 2

r−1

2r

would yield ‖v‖2r ≤ C
√
r . But unfortunately, we do not know if∫ T

0 ‖p‖
2
∞ dt <∞. What we can show is the following bound.
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Proposition 9

Let (u0, v0, θ0) ∈ H2(R2) and let (u, v , θ) be the corresponding
classical solution of (1.10). Then

‖(u(t), v(t))‖44+ν

∫ t

0
‖|(uy (τ), vy (τ))| |(u(τ), v(τ))|‖22 dτ ≤ M1(t),

(1.17)

‖p(·, t)‖2 ≤ M2(t),

∫ t

0
‖∇p(·, τ)‖22 dτ ≤ M3(t), (1.18)

where M1,M2 and M3 are explicit smooth functions of t ∈ [0,∞)
that depend on ν, κ and the initial norm ‖(u0, v0, θ0)‖H2 .
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We also need two lemmas.

Lemma 10

Let f ∈ H1(R2). Let R > 0. Denote by B(0,R) the ball centered
at zero with radius R and by χB(0,R) the characteristic function on

B(0,R). Write f = f + f̃ with

f = F−1(χB(0,R)F f ) and f̃ = F−1((1− χB(0,R))F f ). (1.19)

Then we have the following estimates for f and f̃ .

(1) There exists a pure constant C independent of f and R such
that

‖f ‖L∞(R2) ≤ C
√

logR ‖f ‖H1(R2). (1.20)
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Lemma 10

(2) For any 2 ≤ q < ∞, there is a constant independent of q, R
and f such that

‖f̃ ‖Lq(R2) ≤ C
q

R
2
q

‖f̃ ‖H1(R2) ≤ C
q

R
2
q

‖f ‖H1(R2) (1.21)

In particular, for q = 4,

‖f̃ ‖L4(R2) ≤
C√
R
‖f ‖H1(R2).
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Lemma 11

Let q ∈ [2,∞). Assume that f , g , gy , hx ∈ L2(R2) and
h ∈ L2(q−1)(R2). Then∫∫

R2

|f g h| dxdy ≤ C ‖f ‖2 ‖g‖
1− 1

q

2 ‖gy‖
1
q

2 ‖h‖
1− 1

q

2(q−1)‖hx‖
1
q

2 .

(1.22)
where C is a constant depending on q only. Two special cases of
(1.22) are∫∫

|f g h| dxdy ≤ C ‖f ‖2 ‖g‖
2
3
2 ‖gy‖

1
3
2 ‖h‖

2
3
4 ‖hx‖

1
3
2 (1.23)

and ∫∫
|f g h| dxdy ≤ C ‖f ‖2 ‖g‖

1
2
2 ‖gy‖

1
2
2 ‖h‖

1
2
2 ‖hx‖

1
2
2 . (1.24)
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Proof of Proposition 7.{
ut + uux + vuy = −px + ν uyy ,
vt + uvx + vvy = −py + ν vyy + θ

(1.25)

Taking the inner product of the second equation in (1.25) with

v |v |2r−2 and integrating by parts, we obtain

1

2r

d

dt

∫
|v |2r + ν(2r − 1)

∫
v2y |v |2r−2

= (2r − 1)

∫
p vy |v |2r−2 +

∫
θ v |v |2r−2

= (2r − 1)

∫
p vy |v |2r−2 + (2r − 1)

∫
p̃ vy |v |2r−2 +

∫
θ v |v |2r−2.
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By Hölder’s inequality,∫
θ v |v |2r−2 ≤ ‖θ‖2r ‖v‖2r−12r , (1.26)∫
p vy |v |2r−2 ≤ ‖p‖∞ ‖v r−1‖2 ‖vyv r−1‖2.

Applying Lemma 8, we have∫
p̃ vy |v |2r−2 ≤ C‖p̃‖

2
3
4 ‖p̃x‖

1
3
2 ‖v

r−1‖
2
3
2 ‖(r−1)vyv

r−2‖
1
3
2 ‖vyv

r−1‖2.
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Furthermore, by Hölder’s inequality,

∥∥|v |r−1∥∥
2

= ‖v‖r−12(r−1) ≤ ‖v‖
1

r−1

2 ‖v‖
r(r−2)
r−1

2r ,∥∥|v |r−2vy∥∥22 =

∫
|v |2(r−2)v2

y =

∫
|v |2(r−2)v

2(r−2)
r−1

y v
2

r−1
y ≤ ‖vy‖

2
r−1

2

∥∥vy |v |r−1∥∥ 2(r−2)
r−1

2
.

Therefore,∫
p vy |v |2r−2 ≤ C ‖p‖∞ ‖v‖

1
r−1

2 ‖v‖
r(r−2)
r−1

2r ‖vyv r−1‖2,∫
p̃ vy |v |2r−2 ≤ C (r − 1)

1
3 ‖p̃‖

2
3
4 ‖p̃x‖

1
3
2 ‖v‖

2
3(r−1)

2 ‖v‖
2r(r−2)
3(r−1)

2r

×‖vy‖
1

3(r−1)

2

∥∥vy |v |r−1∥∥1+ (r−2)
3(r−1)

2
.
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By Young’s inequality and Lemma 10,

(2r − 1)

∫
p vy |v |2r−2 ≤

ν

4
(2r − 1)‖vyv r−1‖22

+C (2r − 1)(logR) ‖p‖2H1‖v‖
2

r−1

2 ‖v‖
2r−2− 2

r−1

2r .

By Young’s inequality and Lemmas 10,

(2r − 1)

∫
p̃ vy |v |2r−2 ≤

ν

4
(2r − 1)‖vyv r−1‖22 + C (2r − 1)(r − 1)

2r−2
2r−1

×‖p̃‖
4(r−1)
2r−1

4 ‖p̃x‖
2(r−1)
2r−1

2 ‖vy‖
2

2r−1

2 ‖v‖
4

2r−1

2 ‖v‖
2r−2− 2(r+1)

2r−1

2r

≤ ν

4
(2r − 1)‖vyv r−1‖22 + C (2r − 1)(r − 1)

2r−2
2r−1R−

r−1
2r−1

×‖p‖
2r−2
2r−1

L4
‖p‖

4r−4
2r−1

H1 ‖vy‖
2

2r−1

2 ‖v‖
4

2r−1

2 ‖v‖
2r−3− 3

2r−1

2r .
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Without loss of generality, we assume ‖v‖2r ≥ 1. Inserting

(1.26),(1.27) and (1.27) in (1.26), we have

1

2r

d

dt
‖v‖2rL2r +

ν

2
(2r − 1)

∫
v2y |v |2r−2 dx

≤ C (2r − 1)(logR) ‖p‖2H1‖v‖
2

r−1

2 ‖v‖2r−22r

+C (2r − 1)(r − 1)
2r−2
2r−1R−

r−1
2r−1 ‖p‖

2r−2
2r−1

L4
‖p‖

4r−4
2r−1

H1 ‖vy‖
2

2r−1

2 ‖v‖
4

2r−1

2 ‖v‖2r−22r

+‖θ‖L2r ‖v‖2r−1L2r
.
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Especially,

d

dt
‖v‖2L2r ≤ C (2r − 1)(logR) ‖p‖2H1‖v‖

2
r−1

2

+C (2r − 1)(r − 1)
2r−2
2r−1R−

r−1
2r−1 ‖p‖

2r−2
2r−1

L4

(
‖p‖2H1 + ‖vy‖22

)
‖v‖

4
2r−1

2

+ ‖θ‖2L2r + ‖v‖2L2r .

Taking R = (2r − 1)
2r−1
2r−2 (r − 1)2, integrating in time and applying

Propositions, we obtain

‖v(t)‖2L2r ≤ ‖v0‖
2
L2r + B1(t)r log r + B2(t),

where B1 and B2 are explicit integrable functions. Therefore,

sup
r≥2

‖v(t)‖2L2r
r log r

≤ sup
r≥2

‖v0‖2L2r
r log r

+ (B1(t) + B2(t)).

This completes the proof of Proposition 7.
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This subsection proves Proposition 8.

By the Littlewood-Paley decomposition, we can write

f = SN+1f +
∞∑

j=N+1

∆j f ,

where ∆j denotes the Fourier localization operator and

SN+1 =
N∑

j=−1
∆j .

The definitions of ∆j and SN are now standard. Therefore,

‖f ‖∞ ≤ ‖SN+1f ‖∞ +
∞∑

j=N+1

‖∆j f ‖∞.
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We denote the terms on the right by I and II . By Bernstein’s

inequality, for any q ≥ 2,

|I | ≤ 2
2N
q ‖SN+1f ‖q ≤ 2

2N
q ‖f ‖q.

Taking q = N, we have

|I | ≤ 4‖f ‖N ≤ 4
√
N logN sup

r≥2

‖f ‖r√
r log r

.

By Bernstein’s inequality again, for any s > 1,

|II | ≤
∞∑

j=N+1

2j‖∆j f ‖2 =
∞∑

j=N+1

2−j(s−1) 2sj‖∆j f ‖2

= C 2−(N+1)(s−1) ‖f ‖Bs
2,2
.

where C is a constant depending on s only.
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By identifying Bs
2,2 with Hs , we obtain

‖f ‖∞ ≤ 4
√
N logN sup

r≥2

‖f ‖r√
r log r

+ C 2−(N+1)(s−1) ‖f ‖Hs .

We obtain the desired inequality (1.15) by taking

N =

[
1

s − 1
log2(e + ‖f ‖Hs )

]
,

where [a] denotes the largest integer less than or equal to a. �
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Our attention here focuses on the following 2D Boussinesq equa-

tions with horizontal dissipation in the vertical velocity equation and

vertical dissipation in the temperature equation

∂tu + u∂xu + v∂yu + ∂xp = 0,
∂tv + u∂xv + v∂yv + ∂yp − ∂xxv = θ,
∂tθ + u∂xθ + v∂yθ − ∂yyθ = 0,
∂xu + ∂yv = 0,
u(x , y , 0) = u0(x , y), v(x , y , 0) = v0(x , y),
θ(x , y , 0) = θ0(x , y).

(1.27)

Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan, J.Math. Fluid Mech.(2017)

established several global bounds, which may be useful in the even-

tual resolution of whether or not (1.27) is globally well-posed.
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Theorem 12 (Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan (2017))

Assume that (~u0, θ0) ∈ Hσ
(
R2
)

with σ > 2 and ∇ · ~u0 = 0. Let
(~u, θ) be the corresponding solution of (1.27). Then, (~u, θ) admits
the following global bounds, for any T > 0 and t ≤ T,

‖~u(t)‖2H1 +

∫ t

0
‖∂x∇v(τ)‖2L2 dτ ≤ C ,

where C = C (T , ~u0, θ0);

‖θ(t)‖2H1 +

∫ t

0
‖∂y∇θ(τ)‖2L2 dτ ≤ C ,

where C = C (T , ~u0, θ0);
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Theorem 12 (Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan (2017))

∥∥∥|∂y |1+s θ(t)
∥∥∥2
L2

+

∫ t

0

∥∥∥|∂y |2+s θ(τ)
∥∥∥2
L2
dτ ≤ C ,∫ t

0
‖∂yθ(τ)‖2L∞ dτ ≤ C ,

where 0 < s < 1
2 and C = C (T , ~u0, θ0);

‖∂xθ(t)‖Lq ≤ C , 2 ≤ q <∞

where C = C (T , q, ~u0, θ0) .
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The anisotropic Sobolev inequalities:

Lemma 13

The following anisotropic Sobolev inequalities hold, 1
2 < γ ≤ 1,∫

R2

|fgh|dxdy ≤ C‖f ‖L2‖g‖
1
2

L2
‖∂xg‖

1
2

L2
‖h‖

1
2

L2
‖∂yh‖

1
2

L2
,∫

R2

|fgh|dxdy ≤ C‖f ‖L2‖g‖
1
2

L2
‖∂xg‖

1
2

L2
‖h‖

2γ−1
2γ

L2
‖|∂y |γ h‖

1
2γ

L2
.
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∂tu + (u, v) · ∇u + ∂xP = µ1∂xxu + µ2∂yyu,

∂tv + (u, v) · ∇v + ∂yP = ν1∂xxv + ν2∂yyv + θ,

∂tθ + (u, v) · ∇θ = η1∂xxθ + η2∂yyθ,

∂xu = −∂yv ,
(u, v)(x , y , 0) = (u0, v0)(x , y), θ(x , y , 0) = θ0(x , y).

(1.28)

Global results to the above system:

(I ) µ1 = ν1 > 0, µ2 = ν2 = η1 = η2 = 0.

Danchin − Paicu, 2011,M3AS ;

Larios − Lunasin − Titi , 2013, JDE .(weaker space)

(II ) µ1 = ν2 = η1 = η2 = 0, µ2 > 0, ν1 > 0,

orµ1 = µ2 = η1 = η2 = 0, ν1 > 0, ν2 > 0.

Adhikari − Cao − Shang −Wu − Xu − Ye, 2016, JDE ;

(III ) µ1 = ν1 = 0, µ2 = ν2 > 0, η1 = 0, η2 > 0.

Cao −Wu, 2013,ARMA(H2); Li − Titi , 2016,ARMA(L2x).
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Our aim: between (−∆)α and (−∂x1x1)

Boussinesq equations with fractional-anisotropic dissipation:
∂tu + (u · ∇)u + µΛ2α

x1 u +∇p = θe2,

∂tθ + (u · ∇)θ + νΛ2β
x1 θ = 0,

∇ · u = 0,

u(x , 0) = u0(x), θ(x , 0) = θ0(x),

(1.29)

where Λγx1 = (−∂x1x1)γ/2 is the pseudodifferential operator defined

via the Fourier transform

Λ̂γx1u(ξ) = |ξ1|γ û(ξ).

Vorticity equation:

∂tω + (u · ∇)ω + µΛ2α
x1 ω = ∂x1θ.

‖ω(t)‖L∞ ≤ ‖∂x1θ(t)‖L∞ .
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Motivation

Blow-up criterion:∫ T

0
‖∇u(·, t)‖L∞ dt <∞ ⇐⇒ Global regularity .

One Way: By the interpolation inequality and Biot-Savart Law:

‖∇u‖L∞ ≤ C (‖∇u‖L2 + ‖Λ1+α
x1 ∇u‖L2 + ‖Λx2∇u‖L2)

≤ C (‖ω‖L2 + ‖Λαx1∇ω‖L2 + ‖∇ω‖L2).

We need estimate:∫ T

0
‖ω(t)‖L2 + ‖Λαx1∇ω(t)‖L2 + ‖∇ω(t)‖L2 dt ≤ C .
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Motivation

Blow-up criterion:∫ T

0
‖∇u(·, t)‖L∞ dt <∞ ⇐⇒ Global regularity .

Another way: By logarithmic Sobolev interpolation inequality:

‖∇u‖L∞ ≤ C + C
(

sup
q≥2

‖∇u‖Lq
q

)
ln
(
e + ‖ω‖Hσ

)
, ∀σ > 1.(1.30)

By the Biot-Savart law:

sup
q≥2

‖∇u(t)‖Lq
q

≤ C‖ω(t)‖L2∩L∞
(
‖∇u(t)‖Lq ≤ C

q2

q − 1
‖ω(t)‖Lq

)
.

‖ω(t)‖L∞ ≤ ‖∂x1θ‖L∞ ≤ C (‖∇θ‖L2 + ‖Λβx1∇θ‖L2 + ‖Λ2β+ 1
2

x1 θ‖L2).
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Main Result

Our main Theorem is as follows:

Theorem 6 (J. Wu-Xu-Z. Ye, 2018, JMPA )

If α and β are in any one of the two ranges:

(1) α + β > 1,
1

2
< α ≤ 1,

1

2
≥ β > β0,

(2) α + β ≥ 1, β >
2 +
√

2

4
,

where

β0 =
2α√

16α4 − 16α3 + 28α2 − 12α + 1 + 4α2 − 2α + 1
, (1.31)

then (1.29) admits a unique global solution.
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The Sketch of Proof: The basic estimates

Lemma 7

Assume (u0, θ0) satisfies the assumptions stated in Theorem 6.
Then the corresponding solution (u, θ) of (1.29) admits the
following bounds, for any t > 0,

‖θ(t)‖2L2 +

∫ t

0
‖Λβx1θ(τ)‖2L2 dτ ≤ ‖θ0‖

2
L2 , (1.32)

‖u(t)‖2L2 +

∫ t

0
‖Λαx1u(τ)‖2L2 dτ ≤ (‖u0‖L2 + t‖θ0‖L2)2,(1.33)

‖θ(t)‖L∞ ≤ ‖θ0‖L∞ , (1.34)

‖θ(t)‖pLp + C

∫ t

0

∫
R
‖θ(., x2)‖p

Ḃ
2β
p

p,p

dx2dτ ≤ ‖θ0‖pLp , (1.35)

where Ḃsp,r denotes the homogeneous Besov space associated with
the variable x1. 89 / 114
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The Sketch of Proof: The basic estimates (Remark)

In order to derive (1.35), the following lower bound involving the

fractional dissipation is also needed (see Chamorro and

Lemarié-Rieusset’s book), for any β ∈ (0, 1),∫
R

∫
R

Λ2β
x1 θ(x1, x2) |θ(x1, x2)|p−2θ(x1, x2) dx1dx2

≥ C

∫
R
‖θ(., x2)‖p

Ḃ
2β
p

p,p

dx2.
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The Sketch of Proof: The global H1-bound for u

Based on α + β ≥ 1, we first have

Proposition 1

Let α + β ≥ 1. Assume (u0, θ0) satisfies the assumptions stated in
Theorem 6 and let (u, θ) be the corresponding solution. Then, for
any t > 0,

‖∇u(t)‖2L2 +

∫ t

0
‖Λαx1∇u(τ)‖2L2 dτ ≤ C (t, u0, θ0), (1.36)

where C (t, u0, θ0) is a constant depending on t and the initial
data (u0, θ0).
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The Sketch of Proof: The global Lp bound for ω

When α + β > 1, we also obtain a global Lp bound for ω, which

plays an important role in the proof of a global H1 bound for θ in

the case when β ≤ 1
2 .

Proposition 2

Let α + β > 1. Assume (u0, θ0) satisfies the assumptions stated in
Theorem 6 and let (u, θ) be the corresponding solution. Then, for
any 2 ≤ p < 2(α + β) and for any t > 0,

‖ω(t)‖pLp +

∫ t

0

∫
R
‖ω(., x2)‖p

Ḃ
2α
p

p,p

dx2dτ ≤ C (t, u0, θ0), (1.37)

where C (t, u0, θ0) is a constant depending on t and the initial
data (u0, θ0).
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The Sketch of Proof: The global Lp bound for ω (continue)

To prove this global bound (1.37), we make use of the upper

bound of the form∥∥Λκx1(|ω|p−2ω)(., x2)
∥∥
L

p
p−1
x1

≤ C‖ω(., x2)‖Bσ
p,

p
p−1

∥∥|ω(., x2)|p−2
∥∥
L

p
p−2
x1

,

where σ > κ. Here Bsp,r denotes an inhomogeneous Besov space

associated with the variable x1, whose norm is given by

‖f ‖Bs
p,q

≈ ‖f ‖Ḃsp,q + ‖f ‖Lp .

‖f ‖Ḃsp,q =

∑
q∈Z

2jqs‖∆̇j f ‖rLp

 1
q

, ∀r <∞

≈

[∫
Rd

‖f (x + ·)− f (·)‖q
Lp(Rd )

|x |d+sq
dx

] 1
q
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The Sketch of Proof: The global H1 for θ

In the case when β > 1
2 , the global bound holds for any α+ β ≥ 1.

Proposition 3

Let β > 1
2 and α + β ≥ 1. Assume (u0, θ0) satisfies the

assumptions stated in Theorem 6 and let (u, θ) be the
corresponding solution. Then, for any t > 0,

‖∇θ(t)‖2L2 +

∫ t

0
‖Λβx1∇θ(τ)‖2L2 dτ ≤ C (t, u0, θ0), (1.38)

where C (t, u0, θ0) is a constant depending on t and the initial
data (u0, θ0).
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The Sketch of Proof: The global H1 for θ

In the complement case when β ≤ 1
2 , the global bound is given by

the following proposition.

Proposition 4

Assume α and β satisfy

1

2
< α ≤ 1,

1

2
≥ β > β0, α + β > 1. (1.39)

Assume (u0, θ0) satisfies the assumptions stated in Theorem 6 and
let (u, θ) be the corresponding solution. Then, for any t > 0,

‖∇θ(t)‖2L2 +

∫ t

0
‖Λβx1∇θ(τ)‖2L2 dτ ≤ C (t, u0, θ0), (1.40)

where C (t, u0, θ0) is a constant depending on t and the initial
data (u0, θ0). 95 / 114
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The Sketch of Proof

In order to prove the global H1 for θ above, we need anisotropic

Sobolev inequalities.

Lemma 8 (anisotropic Sobolev inequality)

Assume p, q ∈ [2, ∞], and γ1 >
1
p and γ2 >

1
q . Then, for a

constant C = C (p, q, γ1, γ2) > 0,∫
R

∫
R
|f g h| dx1dx2 ≤ C ‖f ‖Lqx2Lpx1 ‖g‖

1− 1
γ1p

L2
‖Λγ1x1g‖

1
γ1p

L2

×‖h‖
1− 1

γ2q

L2
‖Λγ2x2h‖

1
γ2q

L2
. (1.41)
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The Sketch of Proof

We start with the one-dimensional Sobolev inequality

‖g‖
L

2p
p−2
x1

(R)
≤ C‖g‖

1− 1
γ1p

L2x1 (R)
‖Λγ1x1g‖

1
γ1p

L2x1 (R)
, p ∈ [2,∞], γ1 >

1

p
.∫

R

∫
R
|f g h| dx1dx2 ≤ C

∫
R
‖f ‖Lpx1 ‖g‖L

2p
p−2
x1

‖h‖L2x1 dx2

≤ C

∫
R
‖f ‖Lpx1 ‖g‖

1− 1
γ1p

L2x1
‖Λγ1x1g‖

1
γ1p

L2x1
‖h‖L2x1 dx2

≤ C
(∫

R
‖f ‖q

Lpx1
dx2
) 1

q
(∫

R
‖g‖2L2x1 dx2

) γ1p−1
2γ1p (1.42)

×
(∫

R
‖Λγ1x1g‖

2
L2x1

dx2
) 1

2γ1p ‖h‖
L

2q
q−2
x2

L2x1

= C‖f ‖Lqx2Lpx1 ‖g‖
1− 1

γ1p

L2
‖Λγ1x1g‖

1
γ1p

L2
‖h‖

L
2q
q−2
x2

L2x1

. (1.43)
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‖h‖
L

2q
q−2
x2

L2x1

(1.44)

≤ C
(∫

R
‖h(x1, .)‖2

L
2q
q−2
x2

dx1
) 1

2

≤ C
(∫

R
‖h(x1, .)‖

2− 2
γ2q

L2x2
‖Λγ2x2h(x1, .)‖

2
γ2q

L2x2
dx1
) 1

2

≤ C
(∫

R
‖h(x1, .)‖2L2x2 dx1

) γ2q−1
2γ2q

(∫
R
‖Λγ2x2h(x1, .)‖2L2x2 dx1

) 1
2γ2q

= C‖h‖
1− 1

γ2q

L2
‖Λγ2x2h‖

1
γ2q

L2
. (1.45)
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The Sketch Proof

Lemma 9 (anisotropic Sobolev inequality)

Let p, q ∈ [2,∞]. Then,

‖f ‖Lqx2Lpx1 ≤ C ‖f ‖γ1 γ2
L2x1x2
‖Λσ2x2 f ‖

γ1 (1−γ2)
L2x1x2

‖Λσ1x1 f ‖
(1−γ1) γ2
L2x1x2

×‖Λσ2x2 Λσ1x1 f ‖
(1−γ1) (1−γ2)
L2x1x2

, (1.46)

γ1, γ2 ∈ [0, 1], σ1 ≥ 0 and σ2 ≥ 0 satisfy

(1− γ1)σ1 =
1

2
− 1

p
, (1− γ2)σ2 =

1

2
− 1

q
.
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The Sketch Proof

Lemma 10 (anisotropic Sobolev inequality (continue))

‖f ‖Lqx2Lpx1 ≤C ‖f ‖
ρ
L2x1x2
‖Λσ1+σ2x2 f ‖

σ2
σ1+σ2

γ1 (1−γ2)
L2x1x2

× ‖Λσ1+σ2x1 f ‖
σ1

σ1+σ2
(1−γ1) γ2

L2x1x2
‖Λσ2x2 Λσ1x1 f ‖

(1−γ1) (1−γ2)
L2x1x2

,

where ρ is given by

ρ = γ1γ2 +
σ1

σ1 + σ2
γ1(1− γ2) +

σ2
σ1 + σ2

(1− γ1)γ2.
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The Sketch Proof

Lemma 11 (anisotropic Sobolev inequality (continue))

In the special case when p = q =∞, (1.46) becomes

‖f ‖L∞ ≤ C ‖f ‖
(1− 1

2σ1
)(1− 1

2σ2
)

L2
‖Λσ2x2 f ‖

(1− 1
2σ1

) 1
2σ2

L2
‖Λσ1x1 f ‖

1
2σ1

(1− 1
2σ2

)

L2

×‖Λσ1x1 Λσ2x2 f ‖
1

4σ1σ2

L2
, (1.47)

where σ1, σ2 >
1
2 .
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The Sketch Proof: α > 1
2 , β > β0

Key bound:

Proposition 5 (H1 bound of ω for the case α > 1
2 and β > β0)

The ω = ∇× u satisfies

‖∇ω(t)‖2L2 +

∫ t

0
‖Λαx1∇ω(τ)‖2L2 dτ ≤ C (t, u0, θ0), (1.48)

where C (t, u0, θ0) is a constant depending on t and the initial
data (u0, θ0).

This key estimate allows us to show higher regularity below.
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To prove Proposition 5, we first derive a global H 2-bound for u.

Taking the gradient of the vorticity equation

∂tω + (u · ∇)ω + Λ2α
x1 ω = ∂x1θ,

and dotting it with ∇ω, we have

1

2

d

dt
‖∇ω(t)‖2L2 +

∥∥Λαx1∇ω
∥∥2
L2 = −

∫
R2

(∇u · ∇ω) · ∇ωdx −
∫
R2

∂x1θ∆ωdx

:= N1 + N2.
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where N1 is a quadratic form and can be explicitly written as

N1 =−
∫
R2

∂x1u1∂x1ω∂x1ωdx −
∫
R2

∂x1u2∂x2ω∂x1ωdx

−
∫
R2

∂x2u1∂x1ω∂x2ωdx −
∫
R2

∂x2u2∂x2ω∂x2ωdx

:=N11 + N12 + N13 + N14.
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Applying Lemma 8 with p = q = 2, γ1 = γ2 = α > 1
2 and Hölder’s

inequality, we obtain

N11,N12 ≤ C‖∇ω‖L2 ‖∂x1u‖
1− 1

2α

L2

∥∥Λαx2∂x1u
∥∥ 1

2α

L2
‖∂x1ω‖

1− 1
2α

L2

∥∥Λαx1∂x1ω
∥∥ 1

2α

L2

≤ C‖∇ω‖2−
1
2α

L2
‖ω‖1−

1
2α

L2

∥∥Λαx2∂x1u
∥∥ 1

2α

L2

∥∥Λαx1∇ω
∥∥ 1

2α

L2

≤ C‖∇ω‖2−
1
2α

L2
‖ω‖1−

1
2α

L2

∥∥Λαx1∇u
∥∥ 1

2α

L2

∥∥Λαx1∇ω
∥∥ 1

2α

L2

≤ 1

16

∥∥Λαx1∇ω
∥∥2
L2

+ C‖ω‖
4α−2
4α−1

L2

∥∥Λαx1∇u
∥∥ 2

4α−1

L2
‖∇ω‖2L2

where in the third line we have applied the following estimate∥∥Λαx2∂x1u
∥∥
L2

= ‖|ξ2|α |ξ1| û(ξ)‖L2 ≤ ‖|ξ1|
α |ξ|û(ξ)‖L2 =

∥∥Λαx1∇u
∥∥
L2
.

(1.49)
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Once again, Lemma 8 and the inequalities (1.49) entail

N13 ≤ C ‖∂x2ω‖L2 ‖∂x2u1‖
1− 1

2α

L2

∥∥Λαx1∂x2u1
∥∥ 1

2α

L2
‖∂x1ω‖

1− 1
2α

L2

∥∥Λαx2∂x1ω
∥∥ 1

2α

L2

≤ C‖∇ω‖2−
1
2α

L2
‖ω‖1−

1
2α

L2

∥∥Λαx1∂x2u
∥∥ 1

2α

L2

∥∥Λαx2∂x1ω
∥∥ 1

2α

L2

≤ C‖∇ω‖2−
1
2α

L2
‖ω‖1−

1
2α

L2

∥∥Λαx1∇u
∥∥ 1

2α

L2

∥∥Λαx1∇ω
∥∥2α
L2

≤ 1

16

∥∥Λαx1∇ω
∥∥2
L2

+ C‖ω‖
4α−2
2α−1

L2

∥∥Λαx1∇u
∥∥ 2

4α−1

L2
‖∇ω‖2L2 .
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N14 = −
∫
R2

∂x2u1∂x2ω∂x2ωdx

≤ C ‖∂x2ω‖L2 ‖∂x1u1‖
1− 1

2α

L2

∥∥Λαx2∂x1u1
∥∥ 1

2α

L2
‖∂x2ω‖

1− 1
2α

L2

∥∥Λαx1∂x2ω
∥∥ 1

2α

L2

≤ C‖∇ω‖2−
1
2α

L2
‖ω‖1−

1
2α

L2

∥∥Λαx1∇u
∥∥ 1

2α

L2

∥∥Λαx1∇ω
∥∥ 1

2α

L2

≤ 1

16

∥∥Λαx1∇ω
∥∥2
L2

+ C‖ω‖
4α−2
4α−1

L2

∥∥Λαx1∇u
∥∥ 2

4α−1

L2
‖∇ω‖2L2 .

Combining these estimates, we obtain

N1 =−
∫
R2

(∇u · ∇ω) · ∇ωdx

≤1

4

∥∥Λαx1∇ω
∥∥2
L2

+ C‖ω‖
4α−2
4α−1

L2

∥∥Λαx1∇u
∥∥ 2

4α−1

L2
‖∇ω‖2L2 .
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By Hölder’s inequality and the interpolation inequality

|N2| ≤ C
∥∥Λαx1∇ω

∥∥
L2

∥∥Λ1−α
x1 ∇θ

∥∥
L2

≤ C
∥∥Λαx1∇ω

∥∥
L2

∥∥∥Λβx1∇θ
∥∥∥ 1−α

β

L2
‖∇θ‖

α+β−1
β

L2

≤ 1

16
‖Λαx1∇ω‖

2
L2 + C (‖Λβx1∇θ‖

2
L2 + ‖∇θ‖2L2)

Combining the estimates above and invoking the fact 2
4α−1 ≤ 2,

we have

d

dt
‖∇ω(t)‖2L2 + ‖Λαx1∇ω‖

2
L2

≤C‖ω‖
4α−2
4α−1

L2
‖Λαx1∇u‖

2
4α−1

L2
‖∇ω‖2L2 + C (‖Λβx1∇θ‖

2
L2 + ‖∇θ‖2L2)

≤C‖ω‖
4α−2
4α−1

L2
(1 + ‖Λαx1∇u‖

2
L2)‖∇ω‖2L2 + C (‖Λβx1∇θ‖

2
L2 + ‖∇θ‖2L2).
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Applying the Gronwall inequality lead to

‖∇ω(t)‖2L2 +

∫ t

0

∥∥Λαx1∇ω(τ)
∥∥2
L2
dτ ≤ C (t, u0, θ0) . (1.50)

This we get a global H2-bound for u.

Now we are ready to establish the global Hs -estimate.
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It follows from energy estimates that

d

dt
(‖u(t)‖2Hs + ‖θ(t)‖2Hs ) + ‖Λαx1u‖

2
Hs + ‖Λβx1θ‖

2
Hs

≤C (1 + ‖∇u‖L∞ + ‖∇θ‖L∞)(‖u‖2Hs + ‖θ‖2Hs )

To bound ‖∇u‖L∞ , we recall the interpolation inequality

‖h‖L∞ ≤ C (‖h‖L2 + ‖Λδ1x1h‖L2 + ‖Λδ2x2h‖L2),
1

δ1
+

1

δ2
< 2, (1.51)

which implies that

‖∇u‖L∞ ≤ C
(
‖∇u‖L2 +

∥∥Λ1+α
x1 ∇u

∥∥
L2

+ ‖Λx2∇u‖L2
)

≤ C
(
‖ω‖L2 +

∥∥Λαx1∇ω
∥∥
L2

+ ‖∇ω‖L2
)
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The global H2-bound in (1.50) then yields∫ t

0
‖∇u(s)‖2L∞ds <∞

This bound leads to a global bound for ‖∇θ‖L∞ . In fact, for any

q ∈ [1,∞],

‖∇θ‖Lq ≤ ‖∇θ0‖Lq exp

[∫ t

0
‖∇u(τ)‖L∞dτ

]
It is then clear that

‖u(t)‖2Hs + ‖θ(t)‖2Hs +

∫ t

0

(∥∥Λαx1u(τ)
∥∥2
Hs +

∥∥∥Λβx1θ(τ)
∥∥∥2
Hs

)
dτ <∞

This obtain Proposition 6. �
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The Sketch Proof: α > 1
2 , β > β0

Proposition 6 (Higher regularity: α > 1
2 and β > β0)

Assume that (u0, θ0) ∈ Hs(R2)× Hs(R2) with s > 2 and
∇ · u0 = 0. Assume α and β satisfy

1

2
< α ≤ 1,

1

2
≥ β > β0, α + β > 1.

then the corresponding solution of (1.29) obeys the following
global bound

‖u(t)‖2Hs + ‖θ(t)‖2Hs +

∫ t

0
(‖Λαx1u(τ)‖2Hs + ‖Λβx1θ(τ)‖2Hs ) dτ <∞.
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The Sketch Proof: α + β ≥ 1, β > 2+
√

2
4

Proposition 7

Assume (u0, θ0) satisfies the assumptions stated in Theorem 6. If
α + β ≥ 1 and β > 1

2 , then there holds

‖Λβ+
1
2

x1 θ(t)‖2L2 +

∫ t

0
‖Λ2β+ 1

2
x1 θ(s)‖2L2 ds ≤ C (t, u0, θ0), (1.52)

where C (t, u0, θ0) is a constant depending on t and the initial
data.

The following fact will be used to prove (1.52), for any β > 1
2 ,

‖Λ
1
2
x1(u · ∇θ)‖L2 ≤ C‖u‖H1(‖∇θ‖L2 + ‖Λβx1∇θ‖L2). (1.53)
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The Sketch Proof: α + β ≥ 1, β > 2+
√

2
4

The key bound (1.52) along with β > 2+
√
2

4 yields

Proposition 8

Assume that (u0, θ0) ∈ Hs(R2)× Hs(R2) with s > 2 and
∇ · u0 = 0. Assume α and β satisfy

α + β ≥ 1, β >
2 +
√

2

4
.

Then the corresponding solution of (1.29) obeys the following
global bound

‖u(t)‖2Hs + ‖θ(t)‖2Hs +

∫ t

0
(‖Λαx1u(τ)‖2Hs + ‖Λβx1θ(τ)‖2Hs ) dτ <∞.
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