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1. Background
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LBa\ckground

The standard 2D Boussinesq equation can be written as

Vo +V-Vi=—Vp+vAv+ 08,
V.V =0,
0: + V- V0 = kA0,

e V(t,x): the 2D velocity field

e p(t, x): the pressure

e O(t,x): the temperature in the content of thermal convection
and the density in the modeling of geophysical fluids

e v: the viscosity

e «: the thermal diffusivity

e & = (0, 1) is the unit vector in the vertical direction.
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Theory on Well-posedness of Boussinesq Equations
LBa\ckground

The Boussinesq equations model large scale atmospheric and
oceanic flows that are responsible for cold fronts and the jet
stream.

e A.E. Gill, Atmosphere-Ocean Dynamics, Academic Press
(London), 1982.

e J. Pedlosky, Geophysical Fluid Dyanmics, Springer-Verlag, New
York, 1987.

In addition, the Boussinesq equations also play an important in the
study of Rayleigh-Benard convection.
e P. Constantin and C.R. Doering Infinite Prandtl number convec-
tion, J. Statistical Physics 94 (1999).
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Mathematically the 2D Boussinesq equations serve as a lower
dimensional model of the 3D hydrodynamics equations. In fact,
the 2D Boussinesq equations retain some key features of the 3D
Euler and Navier-Stokes equations such as the vortex stretching
mechanism. The inviscid 2D Boussinesq equations are identical to
the Euler equations for the 3D axisymmetric swirling flows.

e A.J. Majda and A.L. Bertozzi, Vorticity and Incompressible Flow,
Cambridge University Press, 2001.
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3D rotating Boussinesq equations —-

1. primitive equations

2. 2D Boussinesq equations

3. surface quasi-geostrophic (SQG) equation

Fluid flows in atmosphere and ocean have two distinctive features:
rotation and stratification. The simplest model that contains both
features is the 3D rotating Boussinesq equation:

O+ 0-Vii+fezs x o =vAd— %Vp—i—pge},

V-i=0, (1.1)

Otp+ 0-Vp = klAp,

where f = 2Qsin ¢ with Q being the angular frequency of
planetary rotation and ¢ the latitude, pj is a constant for reference
density, &3 = (0,0, 1), fé3 x i represents the Coriolis forcing.
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More explicitly, if &= (u, v, w), then

—V
fexid=f| u
0

and (1.1) becomes

Oru + udsu + voyu+ wou — fv =vAu — p—lbﬁxp,

O¢v + u0xv + vOyv + wo,v + fu = vAv — p—lbayp,

Otw + udxw + vo,w + wo,w = vAw — iazp +pg, (1.2)
Oxu+0yv+ 0w =0,

Op + udsp + vOyp+ wd,p = KAp.
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For atmospheric and oceanic flows in the mid-latitude, the
w—equation can be simplified. The terms involving w in the
w—equation are small and the w-equation is reduced to

1
—0,p — pg = 0. (1.3)
Pb

This is the so called the hydrostatic balance. (1.3) provides a
special solution of (1.2). In fact, & = 0 with p and p satisfying
(1.3) solves (1.2). The system of equations containing the
u-equation, the v-equation in (1.2) and

1 .p—pg =0,

Pb

Oxu+0yv + 0w =0,

Otp + udxp + vy, p + wizp = KAp

are called the primitive equations.
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If f =0, (1.2) becomes the 3D Boussinesq equations without
rotation. If f = 0 and all physical quantities are independent of z,
then (1.2) reduces to the 2D Boussinesq equations, which read

Otu + udgu + voyu = —0xp + vAu,
Otv + udyv +voyv = —0,p +vAv 40,
Oxu+0,v =0,

0t0 + u0x0 + v0, 0 = KA.
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Under some circumstances, the 3D rotation Boussinesq reduces to
the surface quasi-geostrophic (SQG) equation. The Rossby number
indicates the ratio of the inertial to the strength of rotation. In
low-pressure systems, the Rossby number is small and the balance
is between Coriolis and pressure forces, namely

fes x ot=——Vp.

Pb

This is the so-called geostrophic balance. In terms of their

()--46
u po \9yP

or simply f pp iy = V1p. After ignoring the dissipation and

components,

removing the geostrophic balance from (1.2),
Oru + udxu + vo,u =0,
O¢v + udxv + vo,v = 0.
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Then, w = Oxv — J, u satisfies

D
Orw + udyw + vo,w = 0, ?O: =0. (1.4)

In terms of the stream function 1,

o ((f\°d
w=A¢=a§¢+a§w+az<<N> df)

where N = /—gd,p denotes the the buoyancy frequency. (1.4)
indicates that, if w is a constant initially, it remains a constant.
Suppose that wy = 0 and re-scaling the z—component, we find
that

Ay = 0.
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In addition, for small Rossby number and through re-scaling,

_ %
p= 0z
and

D
Otp + udxp +vOyp =0 or ?’t):o

Lemma

If g is a bounded smooth function in RY then

AYp=0 RIxRt
Y=g R?

has a bounded smooth solution 1), and

oY

B2 (—A)%g on RY

z=0 -
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Applying above lemma and writing 6 for p, we obtain

8:0 + udd + vd,0 = 0
u=Vty, (-D)p=0,

which is the SQG equation.
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2.1
Local existence and blow-up criterion

15 /124
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Local existence and blow-up criterion

In this section, we introduce the local existence and uniqueness of
smooth solutions of the inviscid Boussinesq equations by Chae
Dongho. They also obtain a blow-up criterion for these smooth
solutions.

e Chae, Dongho; Nam, Hee-Seok, Local existence and blow-up
criterion for the Boussinesq equations. Proc. Roy. Soc. Edinburgh
Sect. A 127 (1997), no. 5, 935-946.
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L Sobolev space

Sobolev space

W P(Q) := {u(x) € LP(Q) | D*u € LP(Q), 0 < |a| < k}
with the standard norm given by

[l iy = 3 10%ulqy. 1< p< o0
0<|al<k

HUHW"’OO(Q) = Z HaaL’HLOO(Q)'

0<a|<k

Denote H™ = W ™2 .
Introduce the function space

V™(R?) = {ve H"(R?);V -v = 0}.
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L Local well-posedness and blow-up criterion
LSobolev space

Set A= (—A)z.
Product estimates

IA*(uv)lle < Cllullen [N V]2 + (vl ees (Al p)
1_ 1 1 _ 1 1
Whereﬁ—*—i-*—g—i-a, P, P2, p4€(17 OO)
Commutator Estimate (1 < p < oo, s > 0)

IA*(uv) — u/\SVHLP < CIVullr [N v ir2 + [[vles [Nl es)
wherel N + Dy E + ﬁ? P, P2, pa € (1 OO)
Gagliado-Nirenberg inequality

IAullee < CIIA ul| 2o [|A2 u]| 15
where 0 <0 <1, 1<p, p1, pp <0
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LSobolev space

Lemma (The Hodge Decomposition in H™)

Every vector field v € H™ (Rd), m € Z* U {0}, has the unique
orthogonal decomposition

v=w+ Vo,

such that the Leray's projection operator Pv = w on the
divergence-free functions satisfies

(i) Pv, Vo € H™, [on Pv - Vdx =0, divPv =0, and
IPvIZ + IVelm = v,
(ii) P commutes with the distribution derivatives,

PD = D*Pv, YveH™ |af<m,
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L Local well-posedness and blow-up criterion

LSobolev space

Lemma 2

(iif) P commutes with mollifiers 7,
P(Jev) = T(Pv), VYveH™, e>0.
(iv) P is symmetric,
(Pu,v)m = (u, PV)m.

(Details see p71,99 of A.J. Majda and A.L. Bertozzi, Vorticity and
Incompressible Flow.)
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L Local well-posedness and blow-up criterion

L Local well-posed

For 2D inviscid Boussinesq egautions with a external potential
force f (t, x)(i.e. curl f =0)

Vi +v-Vv=—-Vp+0f, tcR,, xcR?

0, +v- V=0,

V-v=0, (2.1)
Vlt=o = vo, 0]t=0 = bo.

Theorem 1 (Chae, Dongho; Nam, Hee-Seok 1997)

Let the initial data (vp,0p) € V™ (Rz) x H™ (Rz) and suppose
that £ € L2 ([0, 00); W™ (R?)) for some m > 2. Then there

exists the unique solution (v,8) € C ([0, T]; V™ (R?) x H™ (R?))
to the Boussinesq equations (2.1).
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L Local well-posed

Mollifier

Mollifier: The function satisfies the following conditions,
p(x) € G°(R?), p(x) >0, / p(x)dx = 1.
]R2

The mollification J.v of functions v € LP(R?) for 1 < p < oo and
e>0

€

) =<2 [

R2

p (X — y) v(y)dy, >0
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L Local well-posedness and blow-up criterion

L Local well-posed

Lemma 1

Let J. be the mollifier defined as above. Then:
(i) evllco < IVco, Vv € CO (R2);

(i) DYJev = JD%V, V]a| < m, v € H™ (R?);

(iii) limeo [[Jev — v|[ym = 0, Vv € H™ (R?) ;
(iv) for all v € H™ (R?), k e NU{0}, e > 0,

[ Sev | pgme < 7IIVHHm and [l JD v][co < Vi

Ck
el
V) Jpe (Jeu) vdx = [po u(Jev) dx, Vu € LP (R?),v € L9 (R?),
(1/p)+(1/q) = 1.
(Details see p131 of A.J. Majda and A.L. Bertozzi, Vorticity and

Incompressible Flow.)
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L Local well-posedness and blow-up criterion

L Local well-posed

Now, we regularise the Boussinesq equations (2.1) as follows:
Vi + Je ((Je€®) - V (Jev®)) = =V p© + 0°f,
05 + Je ((Jev®) - V (JeO9)) = 0, (2.2)
divve =0.
Projecting (2.2) onto V™ (R?), we eliminate Vp¢ and the incom-
pressibility condition div v = 0.
vi = —PJ. ((Jev©) - V (Jev©)) + P (0°F),
0f = —Je (Jev©) - V (JeB9)) s (2.3)

Vﬁ’t:o = v, 06’1“:0 = 0.
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L Local well-posedness and blow-up criterion
LLocal well-posed

We consider

G — ( v > e VM (R2) x H™ (B?)

with the norm

17N = v llym + 10 g -

Thus we reduce the regularised Boussinesq equations (2.3) to

. . Yo (2.4)
v |t:0 =YW= 0 )’
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L Local well-posedness and blow-up criterion

L Local well-posed

where

o ()= (26)
_ ( —PJe ((Jev©) - V (Jev)) + P (6°F ) >
—Je (Jev) - V (Jeb))

By Picard's theorem for ODEs in a Banach space, we can prove
local existence and uniqueness of solutions V€.
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L Local well-posedness and blow-up criterion

L Local well-posed

Lemma 2

Let Fo: V™ (R2) X H™ (RQ) - Vvm (Rz) x H™ (]RZ) be defined
as above for some m > 1. Suppose that f € W ™ (Rz). Then F,
is locally Lipschitz continuous.

Proof. First we prove
Fo: V™ (R?) x H™ (R?) — V™ (R?) x H™ (R?)
Since divv® =0, and div Pu =0, Yu € H™ (Rz), we get

FI(5) € V™ (R?) and F2 (9°) € H (i?).
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L Local well-posedness and blow-up criterion

L Local well-posed

Let

For Fe11

[FET) = FE ) [ ym < NP ((Jevi) - V7 (e (Vi = vE)) g
+IPI((Je(vi = v2)) - VIew3) || pm
=1+ 1.
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L Local well-posedness and blow-up criterion

L Local well-posed

Since m > 1, the commutator-type estimate (see p129 of A.J.
Majda and A.L. Bertozzi, Vorticity and Incompressible Flow.)
provides us with

I =P ((Jevi) - V (Je (vi = v5))l g
< ClI(Jevi) - V (= (v = v5)) [

< C{lJevillpoe Ve (v = v2)llpm + (1 Jevillm 1V (v = V)l 1o }
C

~ il 1vi = v2llpm -

A

IN

Here we used the Lemma 1 (iv) in the last inequality. Similarly, we
obtain

C
1< Z 193 o 15 = 3l
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L Local well-posedness and blow-up criterion

L Local well-posed

On the other hand, since m > 1,

[F22(75) — F22 (03) ||y = 1P (63F) — P (05F)l pgm
< 1161 = 65l ym [[ [l wmoo -

Combining the above estimates, we have

1F2 (75) = F2 (93) [lm < Ce. IF llwmee, 55 1, 1|95 [l g |95 — 95 [

For F2(¥°), which estimate is similar with F!1, we obtain

1F2 (95) = F2 () [|m < *H Ul m 101 =05 wm < C(e, (| U] m) [ = V3| m-
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L Local well-posedness and blow-up criterion

L Local well-posed

Finally, we have
1Fe (1) = F= (U2) lm < C(e, [IFllwmoo, ([0 [ s 1[5 |1 ) [ = 5 [ -

O
The following is a corollary of Picard’s theorem and the above

Lemma.

Proposition 1

Let p e V™ (Rz) x H™ R2) for m > 1 be given and suppose that
fel>® ([O, T]; Wmee (Rz)). Then, for any given ¢ > 0, there
exists the unique solution V¢ € C? ([O, T.);vm (Rz) x H™ (]Rz))
for some T, = T. (|| %||,,,) > 0.

|
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L Local well-posedness and blow-up criterion

L Local well-posed

Next, we continue the local solution of the regularised problem glob-
ally in time.

Proposition 2

Under the same assumptions as in Proposition 1, for any ¢ > 0, the

regularised solution V¢ exists globally in time,

7€ € C' ([0,00); V™ (R?) x H™ (R?)) .

Proof. First, we prove the L?-energy estimate. we take the L°-
inner product of the equation (2.3) with v¢ and 6°, respectively,
and integrate by parts, so that we have

1d
s IVt t)l|f < P (6°F) v (-, 1)l
<G Ol 1670 Ol 2 v Bl 2
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L Local well-posed

and 1d
_— (. 2 =
510G ) = 0.

Thus we get [|0°(-, t)||,;2 = [|fo]| ;2 for all t = 0, and
d ~e
217G t)llo = Mol 2 £, ) e

Integrating over [0, t], we obtain

sup [[7°(+, £)llo < ll¥ollo (1 + sup [[f(-, £)]|ree T) '
0<t<T 0<t<T
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L Local well-posedness and blow-up criterion

L Local well-posed

Next, we prove the H™-energy estimates. Let us consider the first

equation in (2.3),
vi = —PJ. ((J-vF) - V (Jev®)) + P (6°F).

We apply the operator D® on each side of the equation, multiply
the result by D¥v¢, integrate over R? and sum over |a| < m.
Since divv® = 0, by calculus inequality, we then have
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L Local well-posedness and blow-up criterion

L Local well-posed

1d .
o 1V
=— (D¥PJe ((JevE) - V (JevE))) D¥vEdx + [ (D*P(6°F)) D*vFdx
,;m{/ A J
- > {/ P(D*((Jev®) - V (JevE)) — ((JevE) - VD™ (JovF))) D JovE dx
la|<m

+/ (DaP(GEf))DD‘vedx}
RrR2
SCLIV IVl oo [1vEgm + 1Vl 1V IevE oo 4 10% 1 pm 111l wm.ooy }IVE g,

Thus we have

d
e VoG Dllym < € (Vv (s )l oo IVEC )l gm +16%Co )l gm I ) lwmooe)

< C(IIFC Ollwmes + V75 C, 1)l o) 17°C ) -
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L Local well-posedness and blow-up criterion

L Local well-posed

Using a similar process to the second equation in (2.3) leads to

d .
S 10 O < VTG ) oo (1ECs )l pgm + 116705 2] m)
= ClIVLZ (s )l oo 195 2)

Combining the above estimates, we get

[

d . - -
S GOl = CUFC Ollwmee + [VITC ) 00) 19°( 8]

where C is a constant independent of € > 0. From the above two
energy estimates, we have

N0
< CIFCDlhwmos + 1945, D)l 17 D)l
<€) (17 Bllwmee +17°C,BDll) 17°C ),
< COIFC, Ollwnos + (14 sup IFC, e T) ol + oz 195 )

< C(£70<SUET Hf(v t)”W’"’ch ||‘70H0 ) T) ”‘75('7 t)Hm .
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L Local well-posed

Then Gronwall’s inequality gives

sup_[[V(, )l < %0l exp[Ce,

sup [[£(:; t)lwmes, [[Tollg > T)]-
0<t<T 0<t<T

Thus by the standard continuation principle for ordinary differential
equations, We obtain the global existence. (|

Remark: A similar argument to the original Boussinesq equations
(2.1) gives the following H™-energy estimate:

% (G )l < CUFC Dllwmee + VI )] o) V(- O]
(2.5)
which will be used to prove the blow-up criterion of Boussinesq
equations.
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L Local well-posed

In order to get the existence of smooth solutions locally in time
for the original Boussinesq equations (2.1), we need the following
uniform estimates of V*.

Lemma 3
Let the initial condition Vg € V'™ (]R2 x H™ ]RZ),

f € L2 ([0,00); W™ (R?)) for some m > 2. Then:

(i) (7°) is uniformly bounded in C ([0, t]; V™ (R?) x H™ (R?)) for
some time T with the rough upper bound

~—
—

1

2C(]. + sup Hf(7 t)HW’”’oO) (]' -+ HVOHm),
0<t<Typ

(i) (d/dt v¢) is uniformly bounded in C([0, T]; V™ 1(R?) x
H™=1(IR?)) for the above time T.
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L Local well-posedness and blow-up criterion

L Local well-posed

Proof. From the inequality (2.5), since m > 2,

% 175G )l < CUFC O)lwmee + 175G, )l ) 7G5 )

< CAH N llwmoo) (T+17C, )]1,)°
Using the generalised Gronwall's inequality, we have
5 (cm +1) (1 + [[%0] )
7T 1= C(H+ ollm) (14 sup [[£(, £)[wmee)t
0<t<T

L+ [[ve( 1)l

)

This says that the family (V) is uniformly bounded in H™, m > 2.

sup_[[V(, )l < 2(em +1) (1 + [|Y0ll,n)
0<t<T

f
or 1

T = ~
2C (1 +[[Yllm) (L4 sup_ [IF(:, t)[[wmee)
0<t<To

This proves (i).
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L Local well-posedness and blow-up criterion

L Local well-posed

From the equation (2.4), we get

—V

d ~e
dt

<[IPJ ((J=v®) - V (Jev )l ms + [P (67 )| pym-s

m—1
+ [ e ((Jev®) - V (J=0%)) | s
< (L4 | Fllwm-roe) 717, -

This gives the uniform boundedness of (d/dt ¥¢) in V™~ 1(R?) x
H™=1(IR?) and the proof is complete. [
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L Local well-posed

Proof of Theorem 1.

Applying the Arzela-Ascoli theorem to the results of Lemma 3, we
know that the family (7<) is precompact in C([0, T]; V™ *(R?) x
H™-1(R?))(which is also precompact in C([0, T]; ViS. (R?)x HE _ (R?))
forall s < m. ).
Since m > 2, (V) is also precompact in C([0, T]; CL_ (R?) x
CL. (R?)). Thus passing to the limit, we get that the limit function
v € C([0, T]; V™(R?) x H™(IR?)) satisfies

- —P(v-Vv)+ P(6f)

L —(v- Vo) '
The first equation P (vt + (v - Vv) — 0f) = 0 implies
ve + (v-Vv) —0f = Vp,

for some scalar function p = p(x, t). Hence ¥ is a solution of the
Boussinesq equations (2.1). 41/124
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L Local well-posedness and blow-up criterion

L Local well-posed

Proof of Uniqueness. Let

~ Vi ~ Vo
() ==

be two solutions with the same initial data. If we set v = v; — vy,
0 =061—0 p=p1— p2 then V|t=0 =y =0, 0|t=0 =6y =0.
After subtracting corresponding terms, we get

vi+vi-Vv+4+v-Vwv =—-Vp+0f,
0: +vi-VO+v- -V, =0.

Taking the L2-inner product with v and 6 respectively, we obtain
d . . . .
e l7llo = (flleee + 1V 72 oo ) [[]lo-

Since ip, € V™ (RZ) x H™ (Rz) and m > 2,

Vol oo < [vallym and [[VO2l| o < [|62] pym -
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L Local well-posed

Then Gronwall’s inequality gives

and the proof is complete. O
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L Local well-posedness and blow-up criterion

L Local well-posed

Blow-up Criterion
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LLccal well-posedness and blow-up criterion

L Blow-up criterion

Blow-up criterion

Theorem 2 (Chae, Dongho; Nam, Hee-Seok 1997)

Let the initial data vog € V™ (]Rz) ,00€ H™ (]RZ) for some m > 2
and suppose that f € L* ([0, T]; W™ (R?)). Then we have:

limsup (|[v(-, t)|[nm + [|6(-, t)||#m) = o0
t T

if and only if
-
/ IVO(-, 7)||LocdT = 0.
0
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L Blow-up criterion

Proof. (Necessity) Suppose v and 6 remain smooth on the time
interval [0, T], i.e.

sup_([[v(:; t)l[m + (16, ) [[4m) < C7 < oo
0<t<T

Since m > 2, by the Sobolev inequality,
IVO(-, t)||oe < [|OC,t)|lm < Cr, 0<t<T. (2.6)

This implies

-

/ ”V@(',T)HLoodT < Mt < oc.
0
(Sufficiency) Suppose that
T
/ V0, 7| dr < M.
0
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L Blow-up criterion

We apply the curl operator to the first equation in (2.1).

0
w=curlv=—w——wn

6X1 8X2

can be read as a scalar function and we have
wr+v-Vw= (VO xTf)-e;,

with the initial condition w|:—g = wp = curl vy. Integrating over
[0, t], we obtain

w(Ve(a), t) = wola) + /Ot((VH x f)-e)(Vs(w),s)ds,

where W;(«) is the particle trajectories defined by the following
ordinary differential equations:
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L Blow-up criterion

dt
Vi(a)l—g = a-

d
{ LWi(a) = v (¥e(0). 1),
Using the generalised Minkowski inequality, we obtain

;
lw(s )llee < llwoll s +/0 IVOC D)l £ ) [LedT. (2.7)

Moreover, we can see that

;
lw(s t)l[ee < flwoll oo +/O IVO(, 7)o [, ) oo dT

< C(Ivollgm > 160l pgm > sup_[IF (-, 2)| oo, MT).
0<t<T

(2.8)
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L Blow-up criterion

On the other hand, we apply the gradient operator to the second
equation in (2.1) to get

Vo, + (v-V)VO = —Vv V8.

Similarly to the above, we obtain

;
IVO(-, t)lle < [IV o]l o +/0 IVOC, )| [V V(T edT

-
< 960l + Co [ IVOC, )i o7 rd
’ (2.9)

where we used the ||Vv||;p < Cpllw]|rp with 1 < p < co (Calderon-
Zygmund inequality) in the last inequality. Combining (2.7) with
(2.9), we obtain
[lw (-, )lle + VO, )l < [lwoll e + V0ol 1o

+Cp fy (IFC ) + 1V, D) (o 7)o + 1VOC, 7)10) d
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L Blow-up criterion

Then Gronwall’s inequality gives

lw(-, O)llee + IVO(-, 1) | e
< (lwoll o + [900llo) exp [ Cp Ji (IFC Dl + V0, 7)) 7]
< C (10l m + 1ol im) xb [ Go J5 (IFC 7l + [ 90C, 7)) 7]

< C (I%0llym - 10ll m, sUPo< et £ )11 a7 Go)
(2.10)
where we used

llwoll 1p < c(pP=2)/p o |3 (2/p)+(m—2)(p—2)/(m— 1pHDm 1 H(p 2)/(m=1)p
SCHVOHH'"J Cz]w pzzv

and similarly

Vol 1» < C 100l ym.
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L Blow-up criterion

Now, recall the following well-known result (see e.g. Beale, J. T;
Kato, T.; Majda, A. Remarks on the breakdown of smooth solutions
for the 3-D Euler equations. Comm. Math. Phys.(1984)):
IVv(, )][eee < C{14 (L4 InF [lv(-, 8)[[m) [lw(s t)]lee + (s t)l]er } -
Using (2.10) and (2.8) , the above inequality gives
IVv(, t) Lo

<C([[voll pym, (5 )llee, M7, Go) (L4 In T [Jv(:, )] 1)

sup ||If
0<t<T

Applying (2.6) and above inequality to the H™-energy estimate
(2.5), we obtain

d, .
VG Olm < C(llvollgm - 100l g, _sup (-, )l[wmoe, M, C)
0<t<T

ST ) m) 190 )]m.
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L Blow-up criterion

Then Gronwall’s inequality gives
sup_[[7[|m < C([[volltm, [|00l[m, [|£ (-, t)[|wmee, M7, Cp).
0<t<T

This concludes the proof. O
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L Blow-up criterion

Application

As an application to the blow-up criterion, we prove global existence
of smooth solutions in the case of zero external force. Suppose f =
0. Then the Boussinesq equations (2.1) become

vi+(v-V)v=-Vp

O:4+v-VO=0 (t x)eR, xR?

ditvv:0 (£ . (211)
Vle—o = vo, 0Olt=0 = 6o, x € R2

Theorem 3

Let vo € V™ (R?), 6o € H™ (R?), m > 2. Then the solution (v, )
to the reduced Boussinesq equations (2.11) remains smooth
globally in time.
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L Blow-up criterion

Proof. First, we observe that

lw(- )L <

From the second equation in (2.11), we obtain

w(-t)]l 2 < [lwoll 2 - (2.12)

d
S 10C Ollm < CUNVOC, )l v, )llm + [V V(s )l 100 1)l 1m)
< Clv(, )16 )] Hm.
Then Gronwall’s inequality gives us
106 O < 06l 00 [ € [ vt lanr| . (213
On the other hand, the first equation in (2.11) gives
d
S Ol < CIVV (s gl v, ) am,
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L Blow-up criterion

so that
t
Ve Olln < olymexe | € [ 19 Dlmdr| (219
Applying (2.12) and (2.14) to
IVv(, )l < C{1+(1+ In™ (v (e, ) [lm) lw (-, )l oo+ [[w (-, ) []2r }s
we obtain
t
IVv(-, t)]|t= < C <1 +/ ||Vv(-,7)||LoodT> .
0
Then Gronwall’s inequality gives

sup [|[Vv(:, t)][ree< < ||V vgl|Lee exp[CT]. (2.15)
0<t<T
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L Blow-up criterion

Combining (2.15), (2.14), (2.13) and using the fact
IV Lo < ||0]||4m, we obtain

T
/ IVO(-, 7)||LecdT < MT < 00, VT >0.
0

Then Theorem 3 gives the desired results and the proof is
complete. O
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L Besov Space

Besov Space and its Properties

e Bahouri Hajer, Chemin Jean-Yves, Danchin Raphaél, Fourier
analysis and nonlinear partial differential equations. Springer,
Heidelberg, 2011.
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Lemma (Bernstein inequality)

Let C be a ring, B a ball. A constant C exists so that, for any non
negative integer k, any smooth homogeneous function o of degree
m, any couple of real (a, b) so that b > a > 1 and any function u
of L?, we have

Supp T C AB = sup 8% ull» < CRHARFIGE=E) ||
a=k
Supp U C XC = C’kil/\kHuHLa < sup [|0%u]| ;. < CkH)\kHuHLa;
a=k

1
a

Supp G C AC = ||o(D)ull;o < ComA™ 4G 75) | o
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L Besov Space

Proposition (Dyadic Partition of Unity)

Let us define by C the ring of center O, of small radius 3/4 and
great radius 8/3 . It exists two radial functions x and ¢ the values
of which are in the interval [0, 1], belonging respectively to
D(B(0,4/3)) and to D(C) such that

VEeRY, x(§)+ > v (27¢) =1,

j=0

ve e RA\{0}, Do (27¢) =1,

=

i —Jj'l > 2= Suppy (277-) N Supp ¢ (27"'-) — 9,
j>1= SuppxﬂSupp(p(Q’j-) =0
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L Besov Space

Proposition 3.1 (Dyadic Partition of Unity)
If C = B(0,2/3) +C, then C is a ring and we have

j—J'|>5=2'Cn2ic =4,

vEERY, £ <%0+ D 6?27 <1,
Jj=0

erRd\{O}, <> P (27 <1

JEZ
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L Besov Space

Notations

A _yu=x(D)u=F(x(£)u(9))
it j=0, Aju=¢(27D)u
if j<-2, Aju=0,

ZAU x (27D) u,
-1
if jeZ Aju=¢(27D)u ZAU.

Quasi-orthogonality:
|.]_k‘227 AjAkUZO,
j— k| >5, Aj(Sk—1ulv) =0.

61/124



Theory on Well-posedness of Boussinesq Equations

LGlobal well-posedness in 2-dimension

L Besov Space

Let us denote by Sj the space of tempered distribution such that

lim Sju=0inS".

Jj——o0

Proposition

Tempered distribution u belongs to Sy, if and only if, for any 6 in
D (RY) with value 1 near the origin, we have /\Iim O(AD)u =0 in
—00

S’

62/124



Theory on Well-posedness of Boussinesq Equations

LGlobal well-posedness in 2-dimension

L Besov Space

Definition (Homogeneous Besov Space)

Let s be a real number and (p, r) be in [1,00]%. The homogeneous
Besov space Bj , consists of those distributions v in Sy such that

=

o r
AjuH < 0.
LP

. & rjs
H”HB;J = 22

JEZL

The space B; , endowed with || - || . is a normed space.
: s
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L Besov Space

For any p in [2,0), 3272 is continuously included in LP and LP" is

continuously included in BY, ,.

For any p in [1,2], the space Bg,p is continuously included in LP,

7 4 o - o ~
and LP is continuously included in Bg, p'-

Let 1 < g < p < oo and a be a positive real number. A constant
C exists such that

fllee < CIFIES IFIC ith B=alP_ g=9
Il < CIFIS IF1G  with f=a(2-1), 6=
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L Besov Space

Definition (Nonhomogeneous Besov space)

Let se Rand 1 < p,r < oco. The nonhomogeneous Besov space
B; , consists of all tempered distributions u such that

def i
lullss, = ||(2F 18jll);e

< o0
er(2)

Proposition

Letl<p1<pp<ooandl<n <rn<oco. Then, for any real

number s, the space By, , is continuously embedded in
=3

BP2J2 R

1,1
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L Besov Space

Theorem

A constant C exists which satisfies the following properties. If s
and s, are real numbers such that s; < s, 0 € (0,1), and (p,r) is
in [1,00], then we have
0 1-6
ol oy o < Nl 1

2] )
S
and

lullpyeccnn < = (5 + 125 ) lullhy_ Il
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LGlobal well-posedness in 2-dimension

L Besov Space

The Bony Decomposition:
Considering two tempered distributions u and v , we have

uv = Z Ajruljv.

i’

Definition (Paraproduct)

The nonhomogeneous paraproduct of v by u is defined by

TuV d:ef Z ijluAjV.
J

The nonhomogeneous remainder of u and v is defined by

R(u,v) = Z Aguljv.
lk—jl<1
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L Besov Space

We have the following Bony decomposition:
uv = Tyv+ Tyu+ R(u,v).
We shall sometimes also use the following simplified decomposition:

w=Ty+Tu with Tu® S S vau
J
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L Besov Space

Biot-Savart Law

m Biot-Savart Law:
Vu' = Zk fRn \);_yy\n (v)dy,
2
IVuller < C P llwl[e,  p € (1, 20).

e Lipschitz initial data: Vg € L*™;

e Yudovich initial data:  wg € L*°.
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L Besov Space

Quasi-geostrophic equation: Global Well-posed

2D Quasi-geostrophic equation:

0: 4 (u- V)0 + k(=A)¥20 =0, (x, t) € R? x (0, 0),

u=(Ra0, —R10), Ri= -
(3.1)
Subcritical case (a € (1, 2)):
P. Constantin, J. Wu (1999, Siam MA.): Energy estimates.
Critical case (a = 1):
1. L.A. Caffarelli, A. Vasseur (2010, Annal. Math., 2006):
De Giorgi iteration;

2. A. Kiselev, F. Nazarov, A. Volberg (2007, Invent. Math., 2006):
Moduli of continuity.
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Results of Global Well-posedness

00+ u-VO+ kN0 =0,
O+ u-Vu+vNu+ Vp = e,
u=0.
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L Besov Space

Results of Global Well-posedness

00+ u-VO+ kN0 =0,
O+ u-Vu+vNu+ Vp = e,
u=0.

v,k > 0,a= 0 =2: J. Cannon& E. DiBenedetto; B. Guo.

mr>0,k=0,=20rv=0,xk>0,a=2: D. Chae; T. Hou
& C. Li. (ug, 0p € H*, s > 2)

v >0, /@-05—2oru—0 k>0,a=2:T. Hmidi & S.
Keraani; (uoeBer1 ,hel"2<r<p<o.)

mv =0,k >0,a =2 R Danchin & M. Paicu. (ug, 0y €

L2 wg € LPNL®) (wo = O1u3 — Oats})

v=0,k>0,a¢c(1,2): Hmidi & Zerguine. (2011)

m v =0,k >0,a=1: Hmidi, Keraani & Rousset. (2011)
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L Besov Space

Results of Global Well-posedness

m v, k> 0,aa+ 3 =2 X. (Nonlinear Anal., 2010.)
m088<a<1 l-a<f<f(a)< 1l Miao-Xue (NoDEA,11)
B0<a <1, >2/(2+ a): Constantin-Vicol (GAFA,'12)
09l <a<l a+ ,3 = 1: Jiu-Miao-Wu-Zhang (SIAM-MA,'14)
a,B€(0,1), B> 252, B> 252 : Jiu-Wu-Yang (JDE,'14)
0798 <a<l a+ ﬂ =1 Stefanov—Wu (Mathematics, 15)
a+ﬁ>1,ﬁ>2*,B>°‘J3r20rﬁ>max{3, } X.-
Ye(JDE, '16)

B a+F>1a>0.783: X-Xue-Ye (MN,'17)

AZu; NLO: Wu-Xu-Ye (JMPA, '18) (1) <a <1, 1>
6>@, a+B>1;, (2)a+p>1, 6>2+T‘ﬁ.
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Full Dissipation Case
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L Full dissipation case

This section deals with the 2D viscous Boussinesq equations,

Oiu+u-Vu=-Vp+vAu+0é,

V-u=0, (3.2)
8:0 + u- VO = kA,

where both v and k are positive numbers. The global regularity
can be established for this system of equations.

e J. R. Cannon, E. DiBenedetto, The initial value problem for the
Boussinesq equations with data in Lp, Lecture Notes in Math.,
Vol. 771. Springer, Berlin, 1980, pp.129-144.

Theorem 3.1

Given an initial data (ug,f) € H2(R2). The 2D viscous Boussi-

nesq equations (3.2) have a unique global classical solution (u, #) €
C([0, 00), H?).
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L Full dissipation case

Proof. The proof of this result is almost trivial and similar to that
for the 2D Navier-Stokes equations. It suffices to establish the
global H' bound. First of all, we have the L?-bounds

t
1613 + 2+ /0 IV613dT = 1603,

t
ol +2v [ [Vuler < (laolla+ elfol)®
It follows from the vorticity equation
Orw + u - Vw = vAw + 0y, 0,

that
1d

v 1
EEIIWI@ + || Vw3 < [10]3]105 w5 < EIIVWI@ + ZH«%H%,
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L Full dissipation case

t
1
ot +v [ I9l3er < ol + 6ol

By the equation for 6,

> IV0I w63 < [ 196l[VOPax < € [Vulal VOIS (33

Applying the Gagliardo-Nirenberg inequality

11l 2(ay < € Hf!!L2 HVfH (3.4)

L2 Rd)7
with d =2, namely |||z < C ||fH2/3 ||Vf||1/3 we obtain

v C
IVull3 < C[Vul3[|V2ul2 < §HV2UH§ + ;HVUI@ IVulf5.
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L Full dissipation case

Therefore,
v K C
ClIVullslIVol3 §§HV2UH§ + §HV29H§ + ;llvullg IV ull3
C
+ EHV9H§ V613
Inserting this inequality in (3.3) and applying the integrability

/ IV u|2 dr < oo, / V0|2 dr < oo,
0 0

we have, for any T > 0,
)
IVO(T)I3 + / |A6|3dr < C(T).
0

H? norm can be obtained through a similar procedure.
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L Full dissipation case

We would like to point out that (3.4) depends on the dimension d
and a similar procedure does not yield a global H! bound in the 3D
case. When d = 3, we have

3 3 v C
HVUHL3(R3 <C HVUHEQ(Rs) Hvzu”iz(Rs §HV2UHL2 R3) ;HVUHAE(H@)

But now HVUH?Z(W) is no longer time integrable. This completes
the proof of Theorem 3.1. O

78 /124



Theory on Well-posedness of Boussinesq Equations

LGlobal well-posedness in 2-dimension

L Partial dissipation case

Partial Dissipation Case
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L Partial dissipation case

Consider the Cauchy problem of zero diffusivity Boussinesq

equations:
ov
5 +(v-V)v=—-Vp+rvAv+le,
(By) Zz +(v-V)I =0, (t,x)eR, xR
divv =0,
v(0,x) = w(x), 6(0,x) = bo(x).

The global regularity was obtained by T. Hou and C. Li, Global
well-posedness of the viscous Boussinesq equations, Discrete and
Cont. Dyn. Syst. 12 (2005) and by D. Chae, Global regularity for

the 2D Boussinesq equations with partial viscosity terms, Advances
in Math. 203 (2006) .

80/124



Theory on Well-posedness of Boussinesq Equations

LGlobal well-posedness in 2-dimension

L Partial dissipation case

The result can be stated as follows.

Theorem 3.2 (T. Hou and C. Li 2005, D. Chae 2006)

Let v > 0 be fixed, and divvy = 0. Let m > 2 be an inte-
ger, and (vp,0p) € H™(IR?). Then, there exists a unique solution
(v,0) with € C([0,00); H™(R?))and v € C([0,c0); H™(R?)) N
L2(0, T; H™1(R?)) of the system (Bi).
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L Partial dissipation case

We also write down the zero viscosity Boussinesq equations

ov
¢ +(v-V)v=—-Vp+e,
a0 )
B)S 7+ (v-V)0=krA0, (t,x)eRL xR,
divv =0,
[(0,%) = wo(x), 60, %) = o(x).

The following is the global regularity result on (By).
Theorem 3.3 (D. Chae 2006)

Let x > 0 be fixed, and divvyg = 0. Let m > 2 be an integer.
Let m > 2 be an integer, and (vp,6p) € H™ (R?). Then, there
exists unique solutions (v, 6) with v € C ([0, 00); H™ (R?)) and 6 €
C ([0, o0); H™ (RZ)) N L2 (0, T: Hm+1 (R2)) of the system (By).
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Proof of Theorem 3.2 (v > 0,k = 0)

Let T > 0 be a given fixed time. From the second equation of
(B1) we immediately have

10()Ie < l00llp,  VEE[0, T],  p e[l o]

Taking L2 inner product the first equation of (By) with v, we have,

1d
S V1% + VIV VIR < 0]l oo
Hence,

1d

5 eIVl < 10lzlviiee < 6ol 2 1V 2,

83/124



Theory on Well-posedness of Boussinesq Equations

LGlobal well-posedness in 2-dimension

L Partial dissipation case

Hence, %HVHB < ||6p]|, and we obtain

V()2 < lvoll2 + [I6oll= T, Yt €0, T]. (3.5)

Taking the operation curl on both sides of the first equation of
(Bi), we obtain

wr+ (v Vw =047+ rvAw,

where w = Oy, vo — Oy, v1. Let p > 2. Multiplying above equation
by w|w|P~2 and integrating it over R?, we find,
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L Partial dissipation case

pdt/ lwlPdx + (p— 1)v / |Vwl|?|w|P~2dx

_/ (v- V)|w"dx—/ 0 w|w|P~2dx
P JRr2 R2

1
:—/ div v\w[”dx—i—(p—l)/ Buwx,, |w|P 2 dx
P Jr2 R2
-1 -1
g(p)u/ va|2|w|p—2dx+(p)/ 62|w|P~2dx
2 R2 2v R2

(p—1)v - (p—1) 2
< | Vel 2k + S0 el

Carrying over the term (p_zl)’/ Jg2 IVw|?|w|P~2dx to the left-hand
side, we find

1d (p—1)v 2 . |p—2 (P=1) 2 -2
- lwllf, + F /R VPl 2dx < =017 w1,
(3.6)
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For p =2, in particular, after integration over [0, T] we obtain

;
2
IIw(t)Hfﬁl//o IVe(s)lf2ds < 2 HWOIIfer; |6oll7. T, Ve e [0, T].

Hence, we find that, by Holder's inequality,

/ " IVals)pds < VT ( / ' ||w<s>|i2ds)l/2

< Cllwoll 2 VT + Cllfoll- T, Vte[o, T].
(3.7)
On the other hand, from (3.6) , we have for p € [2,00)

(o) < ol B2 o), 7 < (\wouw”’f;l\(ej\;;ﬁ)
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and

=T

NG 16oll » VT, VEE€[0,T], p € [2,00).

(3.9)
Recall the Gagliardo-Nirenberg interpolation inequality in R?.

lw(®)ller < llwoll o+ ———=—

—2

_P
Iflie < CIFIEIDFIE T, few™ (R2), p>2. (3.10)

By this and the Calderon-Zygmund inequality combined with
estimates (3.5) and (3.9) for p € (2, 00) we find

_P _P
v (t )HZ” 2HVV(f)Hfff2 < Clv(t )HZ” 2H Gl
(VOaQOa T? v, p)a Vt € [Oa T]

V()] < C
<C
(3.11)
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W %P estimate for v

We take the derivative operation D = (0y,, Ox,) on the equation of
w, and then take L2 inner product with Dw|Dw|P~2, p > 2.

pdtHDwH +(p—1)w / ‘Dzw‘ | Dw|P~2dx

—/ [D(v-V)w]leDw\pzdx—/ DexlDW‘Dw‘pide
R2 R2

-1
(/ |D%? | Dl 2+ & )/| XPIDw P

—i-(/ |D2w| ]Dw]p2dx—|—/ |VO?| Dw|P~2dkx,
4 R2 v R2

<
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L Partial dissipation case

We have
1 d||D 1e, (_1)’// ‘D2w‘2\Dw|p_2dx
x) || Dw|Pdx + / |VO|?| Dw|P~2dx
(" Dy iDeil, Muveu + ==,

where we used Young's inequality, a’hP~2 < pap + E=2pP for
> 2. Recalling the estimate of ||v(t)||i~ in (3.11), we find that

d
ZIDw|f, < CIDwlf, + CIVOlE, e[ Tl (3.12)

where C = C(w, 6o, T, v, p).
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L Partial dissipation case

Now taking V1 = (—0,,,0x,) to the second equation of (B;), we
obtain
V40, + (v- V)V =V4e - V.

Taking L2 inner product (2.12) with V4o ’ng‘P—2' we deduce,
after integration by part, that

1
|V9|pdx— —— [ (v-V)|VO|Pdx + (VLQ.V) v V40|V0P2dx
pdt P JRr2

g/ V|| V6|Pdx.
]RZ
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L Partial dissipation case

Hence, for p > 2 we have

2 velz,
< PIVV e V0,
< C+IVVlie + 0% ) [1-+ 108 (10],)] 012,
< C+ il + IDwili2) [1+1og™ (IDwE, + [V612)] 19612
<

C(1+||Dwlli2) [1 + log™ ([|1Dwl]|Ts + IV0175) ] IVO]I7s-
(3.13)
where C = (v, 00, T, v, p), and we used the following form of the
Brezis-Wainger inequality.
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L Partial dissipation case

(H. Brezis, S. Wainger, A note on limiting cases of Sobolev
embeddings and convolution inequalities, Comm. Partial
Differential Equations 5 (7) (1980) )

1
Iflle < (L4 VFll2) [1+log™ (IVFlle)] 2 + ClIif[li2. (3.14)

for f € L2 (R?) N WP (R?), which holds for p > 2, Adding (3.12)
and (3.13) together, and setting X(t) = ||V0||[, + ||Dw||{», we find

that
dX
g < C(1+ ||Dw(t)]|12) (1 + log™ X) X.

for all t € [0, T], where C = C(w, 6o, T, v, p).
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L Partial dissipation case

By Gronwall’s lemma we have

X(t) < X(0)exp [exp {CT—i— C/OT HDw(s)HdesH , Vtelo,T],

which, combined with estimate (3.7), implies that for p > 2
|IDw(t)||r < C(v0,00, T,v,p), Vtel0,T]. (3.15)

By the Gagliardo-Nirenberg interpolation inequality (3.10) we have

IVl < CIVVAIE? (0O E™ < Clao)l 7 IDu(0)]E
< C (v, bo, T,y, p) Vtel0,T], pe(2,o],

(3.16)
where we used the estimates (3.8) and (3.15).
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LGlobal well-posedness in 2-dimension

L Partial dissipation case

Recall that the LP estimate of V@ (3.13), we have

d
S IV8ls < V][9],

and by Gronwall’'s lemma

t
960l < 00l [ 19v(@lews). (317
Then, applying the following LP interpolation inequality to (3.17):
2 1-2
[l < NFILIFN ", 2 < p < oo,
we obtain
2 1-2 T
1960 < 9801 V01,7 o0 ([ 19l ).

94 /124



Theory on Well-posedness of Boussinesq Equations
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L Partial dissipation case

we obtain

T
IVO(t)l[e < (1+[IV00o]|12)(1+[[VOo] L) exp </0 !VV(S)HLoo> :
Passing first p — 0o, we have

;
IVO()e < (1 +11VO0]l 2y ) exp (/O HVV(S)IILoodS>

<C Vvtelo,T],

where C = C(||vol|gm » |60||ym » T, ), and we used the estimate of
Vv 1=(3.16).
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LGlobal well-posedness in 2-dimension

L Partial dissipation case

Since we have the embedding, H™ (RZ) — W?2P (R2), for all
m > 2 and p > 2 we attained estimate

.
/ 1V0(-, 7| 1o d < 0.
0

for any given T € (0,00) and for all v, € H™ (R?) with m > 2,
the proof is completed. O
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L Partial dissipation case

Proof of Theorem 3.3 (v =0,k > 0)

Similar to the previous subsection, in order to prove the global
regularity of (B,), we have only to prove estimate L2L° of V6 for
the classical solution of (By) for all T € (0, c0).

First, we can easily get the L2 estimates for f,v and w,

1d

EEHQH% + K[| VO|7. = 0.

Integrating this over [0, T] we have

1 T 1
§H<9(t)llfz +/ IV0||7.dt < 5 16o]7= Vte[0,T]. (3.18)
0
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LGlobal well-posedness in 2-dimension

L Partial dissipation case

For v, L d
saplvit = [ e vax < [0lel vl

Combining this with (3.18), we easily obtain

;
V(B2 < llvoll 2 +/O 16(s) ]| 2ds = [[voll2 + T [|oll 2

for all t € [0, T]. Taking the curl of the first equation of (B), we
have
wr+ (v V)w = —0y. (3.19)

Taking L2 inner product with w, and integrating by part, we deduce

3 aglls < [ 96kldx < 1981zl

and J
EHWHB < VO] 2.
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LGlobal well-posedness in 2-dimension

L Partial dissipation case

Hence, using estimate (3.18), we derive
T
(e < [ 198 adke+ ol

) T 1/2
<TH([TIV0Rt) ol
0

T:
<7 16oll (2 + [lwoll2, ¥t € [0, T].

[
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L Partial dissipation case

WP estimate for (6, v)
Using operation V= on the second equation of (B,), we have

VL0 4+ (v V)Vig = (vLe : v) v+ KAVLE.

We now take scalar product in L? by V16 }VLGVJ_Z, p>2;
1d _
fEHvLeH'L’p +(p—1)r /R2 1D20)2|V0|P~2dx

:/ (VEOV)vV10| V0P~ dx

R2
— (p- 1)/ v (V0 V)TV eP2dx
R2

p—l)/ |v||vL9||029|\vle|P—2dx

(p=1)r / |D26|?|V+0|P—2dx.
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LGlobal well-posedness in 2-dimension

L Partial dissipation case

We carry over the second term to the left-hand side to have

d plp—1)k 2 _
dt\|veyﬁ,,+(2)/ |D?0|" |V6|P~2dx
R2

N

(p—1)p

THVH%OOHVHHIZP

< CA+ VIl + [VVli2)® (1 +log™ ([VV]5:)) VO],

< C(L+ vl + llwllF2) [T+ log™ (llwlfe + IVOII5,)] IV01F
<C

[1+log™ ([wlZe + 1IVO1IZ)] IVOIlZ,
(3.20)
where we applied the Brezis-Wainger inequality (3.14).
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LGlobal well-posedness in 2-dimension

L Partial dissipation case

On the other hand, taking L2 inner product (3.19) with w|w|P~2,
we obtain

ld p 1 P -2
-4 - . dx = — 0, p=<d,
Sl = [ (v Tlulrax = = [ Onulul?2ax
</ V0w Ldx
R2
(p—1)

1
< EHVGHILJP + ||leL)P)
(3.21)
Adding (3.21) to (3.20) , and setting X(t) = [|[VO(t)||7, + |lwl|7s.

we have

SX(1) < 1 +log X()X(1), Ve e[0,T]

The Gronwall lemma provides us with

X(t) < X(0)e*”", Vte[o,T]
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LGlobal well-posedness in 2-dimension

L Partial dissipation case

Hence,
IVO(t)| T + llwllfs < C(vo,60, T, p, ).

We also note that similar to (3.11), combined with above
inequalities implies that

[v(t)][Lee < C||v(t)||2p 2HV (t )Hzp 2

-2
< C\|V(f)H2p *lw(t )H2p ’
< C(vo, b0, T,K,p), Vtel0,T].
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LGlobal well-posedness in 2-dimension

L Partial dissipation case

W?2P estimate for 6

Taking operation D? on the second equation of (B>), and then
taking L? inner product of this with D20 ‘DZH‘p_z, p > 2, we have
after integration by part

2 . 3|2 2,|P—2
pdt HD 0|7, + 1)/<;/RZ |D36|”|D?0)" " dx
:_/ D2(V.V)9029|029|”*2:(p—l)/ D[(v- V)0)D%0|D?0|" " dx
R2 R2
:(p_1)/ Dv - DOD%) |D?0|" 2 dx+(p—1)/ [(v- ¥)DO)D%0 | D?0]" " dx
R2
S )nvenpo/ wvR (020 ax+ B [ (0% 02072 0

( / |D26|” dx +(p / |D%)* |20 d
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L Partial dissipation case

Carrying over the terms, @ f]R2 ‘D39‘2 }Dzﬁ‘p_z dx to the
left-hand side, we derive

d _
= |0%]7, < CIVOIRI9vIE, |D%]17, 2 + CllvIE- | D%,
2p—4

Vo272 w3, || D% 54 v D07,

<
<cvcllolf,.

where we used the Gagliardo-Nirenberg interpolation inequality
(3.10)(note that p — 2" 5 < p when p > 2).
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LGlobal well-posedness in 2-dimension

L Partial dissipation case

Thanks to Gronwall's lemma, we have the estimate
|1D%0(t)||,, < C(vo,00, T, p,5), Vte[0,T], Vp>2.

Using the interpolation inequality (3.16) as previously, we obtain
that
Hve(t)HL‘x’ < C7 vt € [07 T]7

where C = C (||voll 2.+ 160l w2.e » P, £). Similar to the proof of
Theorem 3.2, we have the embedding, H™ (R2) — W?2P (}R2), for
all m> 2 and p > 2, and thus we attained estimate

i
/ 1V0(-, 7| d < o0,
0

which complete the proof. U
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L Fractional dissipation case

2D Boussinesq Equations with
Fractional Dissipation
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LGlobal well-posedness in 2-dimension

L Fractional dissipation case

We consider the Cauchy problem of 2D fractional diffusion
Boussinesq equations for an incompressible fluid flows in R?

(0
a—ttl + (u-Vu+v(—A)*u+ VP = fey,
00
9t + (U : V)(g + H(—A)BQ =0, (3_22)

divu =0, (t,x) € Ry x R?,
\u(x, 0) = wp(x), 6(x,0) = 0Op(x).

where a, 5 € (0,1), and (—A)“ is the pseudodifferential operator
defined via the Fourier transform

(ZD)v(€) = [€22T(e).

In the following, for simplicity, we denote

A= (-D)Y2

108 /124



Theory on Well-posedness of Boussinesq Equations
LGlobal well-posedness in 2-dimension

L Fractional dissipation case

Theorem 3.4 (Global well-posedness; Xiaojing Xu 2010)

Let v >0, k > 0 be fixed, & € [1,1), 8€ (0,3], a4+ B =1, and
div up = 0. Let m > 2 be an integer, and (uo, ) € H™ (R?).
Then, there exists a unique solution (u, ) to the Cauchy problem
(3.22) such that

6 € C([0,00); H™(R?)) N L2(0, o0; H™F(R?)),

and
u € C([0,00); H™(R?)) N L(0, 0o; H™T*(R?)).

Remark 1.1. For simplicity of the exposition, we formulate and
prove Theorem 3.4 in the subcritical case a + 3 =1, only. One
can easily verify that, by arguments from this work, we can obtain
an analogous result for 1 < a+ 38 < 2.
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LGlobal well-posedness in 2-dimension

L Fractional dissipation case

First of all, let us give a positive inequality in framework of LP.

Lemma 3.1 (Positive Inequality)

Let 0 < a < 2. For every p > 1, we have

/n(/\aw)\wv’—m dx > C(p) /R (A%\Wﬁ)z dx,  (3.23)

for all w € LP (R") such that A®w € LP (R"), where

—il
C(p) = 4(22 )
This inequality is well-known in the theory of sub-Markovian opera-
tors and its statement and the proof is given e.g. in (V.A. Liskevich,
Yu.A. Semenov, Some problems on Markov semigroups, Schrodinger
operators, Markov semigroups, wavelet analysis, operator algebras,
1996,). Observe that if & = 2, integrating by parts we obtain (3.23)
with the equality.
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L Fractional dissipation case

Theorem 3.5 (Blow-up Criterion; Xiaojing Xu 2010)

Let a, 8 € [0,2], v > 0, k > 0. Suppose (up,fp) € H™(R?)
with m > 2 being an integer. Then, there exists a unique lo-
cal classical solution (u,8) € C([0, T); H™(R?)) of problem (3.22)
for some T = T(||uollHm(w2), 00]lim(r2)). Moreover, the solu-
tion remains in H™ (R?) up to a time Ty > T, namely (u,6) €
C ([0, T1]; H™ (R?)) if and only if

§
/0 IV0(7)||1sedr < oo. (3.24)
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LGlobal well-posedness in 2-dimension

L Fractional dissipation case

e In the inviscid case ¥ = 0 and ¥k = 0, Blow up Criterion was
proved in Chael997. The arguments from that works with minor
changes also for problem (3.22) with the fractional diffusion, due
to inequality (3.23). By this reason, we skip details of the proof of
Theorem 3.5.

e In order to prove Theorem 3.4, it suffices to show that (3.24)
holds true for the smooth solutions (u,6) to the Cauchy problem
(3.22).

e In the following section, we first show some a priori estimates for a
smooth solution (u,#) € C([0, T); H™(R?)) with m > 2 to (3.22),
then prove that (3.24) is valid.
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LGlobal well-posedness in 2-dimension

L Fractional dissipation case

For simplicity, let v = k = 1.

e Estimate of ||9HL00(0’OO;LFJ(R2)).

Let p > 2. Multiplying the second equation in (3.22) by |§|P~26
and integrating over R?, we deduce that

1d o ‘ -
el —A)P0|9|P20dx =
pdtll9(t)|Lp+/O( )7010|P~=6dx = 0,

where we have used the divergence free condition. This identity
together with Lemma 3.1, allows us to get

t
P
10(E)I1Z- + C(p)/0 IA%1612 (7)IIZ2 d < 160]l .

In particular, when p = 2, we have

t
16(2) 122 + /0 INO()Ba dr < 6ol (3.25)

113 /124



Theory on Well-posedness of Boussinesq Equations

LGlobal well-posedness in 2-dimension

L Fractional dissipation case

e Estimate of ||ul| o (0,00;12(R2))-

Multiplying the first equation of (3.22) by v, and integrating it

over R2, we have

1d 2 o 2 2
——u(®)|i2+ [ u(=A)*udx= [ belul*dx— [ (u-V)u|”dx
2dt R2 R2 R2

— VPu dx.
R2
This identity together with inequality (3.23) and the divergence
free condition, yield that

sl + [ Al ax= [ e dx < [0 el (o) o

By (3.25) and the Holder inequality, we deduce that
t
Ja(®l +4 [ IA°u(r) e dr < 410017 T2 +2 ol
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LGlobal well-posedness in 2-dimension

L Fractional dissipation case

e Estimate of ||W(t)||Loo(07OO;L2(R2)).
Taking the operation curl on both sides of the first equation in
(3.22) and denoting w = curl u = Oy up — Oy, U1, We get

wr + (—A)*w+ (u- V)w = —0,. (3.26)

Multiplying the above equality by w, integrating over R?, we find

1d o 2 1 5
33w O+ I8l = 5 [ (Dl ax— [ s
=— [ Oqwdx
R2

1 , 1
< S IAwl + I

Here, in the last inequality, we have used the Parseval theorem and
the relation o + 5 = 1.
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L Fractional dissipation case

Thus, we have
d 2 a, |2 B2
1 1Oz + INwl[z2 < 1AL
By virtue of estimate (3.25), we deduce that

t t
lwo(£)122 + /0 IA%w(r) |2 dr < JlwollZ + /0 IN%0(r)|2: dr

< C(llwoll2, 1ol 2, T)-
(3.27)
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LGlobal well-posedness in 2-dimension

L Fractional dissipation case

e Estimate of [A*Dw|| ;e (0 00:12(r2))
We first compute the derivative V = (0y,, 0x,) of both sides of

(3.26), and then take L? inner product with Vw. After integration
by parts, we obtain

1 d
HVw( )12 + ||AaVoJ||f2 =— /Rz[V(u - V)w]Vwdx — /RZ Vo, Vwd

— [ [(Vu-V)w]Vwdx — / Vo, Vwdx
R2 R2
1 1
<[V AHVWHBHVWH 2+5 ||/\avw||%2 + SNVl

1 1
<[ Vul 2 |IVels HA“VwHLz + 5 N Vwlliz + SN0l

1
a— 2
< CITull 5 IVl + 2 1AVl f + 21NVl

(3.28)
where we have used the assumptions o > % and divu = 0.
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L Fractional dissipation case

Next, computing the derivative V+ = (—0y,, 0y, ) of the second
equation from (3.22), we easily show that

V40, + V3 (u - V)0 + (-A)PV+Ee = 0.

We multiply the above equality by V16, and integrate it over R2.
Similar arguments as those in (3.28) lead to

> IVH00IE = INT0IE < - [ (0 v)vEovEods
t ]R2
—/ V40 - Vuv+todx
]RZ
— [Vl 2 V0] V6], 2
<[y anwannABvLeuLz

*IIVU\Iz IVHOIE + 5 ”/\BVL9”L2
(3.29)
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Now, combining (3.28) with (3.29), one can show the function
X(t) = [Vw(t)| 2 + [[V0(t) | 2.

satisfies the inequality

d _2a
X0 < CUVullS + [ Vull? 2 )X(2).
[T—« LT-«

Therefore, Gronwall's inequality and the embedding inequality and
estimate (3.27) yield that

X(t) < €X(0) exp{/o (IIVU(T)HZ{@ +IVu(D)? 2, )dr}
SCX(O)eXP{/O (A1 + IAw(r) [ )dr}

B t 322y t
scxw)exp{r‘%af ([ intoi ar) ™+ [ dr}
0 0

< (T, Nlwollyz » 160l 1)-
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L Fractional dissipation case

Finally, by virtue of estimate (3.28), we deduce

t
IVe(t)lIZ2 +/0 IN*Ve(r)l72 dr < C (T, lluolle s 160 )
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L Fractional dissipation case

e Estimate of ||v9HLoo(o’oo;Loo(R2))

Multiplying (3.9) by \vie}”‘z V16, and integrating it over R?, we
have

1d

L ITHOIE + CEITOIP < [ V0 VulToP 2y eax
P dt [ T—o R2

—a

< IVull V40117

Using Gronwall's inequality and the obvious identity [|[VQ||» =
[V+Q|| ., we easily show that

t
IVO(t)lle < C VOl exp{/o IIVU(T)HLwdT}-
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L Fractional dissipation case

This inequality together with the Gagliardo-Nirenberg inequality,
allows us to obtain

/ V()| dr < C / ()15
e
< CT e+t o </ (7|72 dT) + C/ H/\Haw(T H , dr

< C(T,lluollyz s 16ollyn) -

_1
A (r) :2* dr

Using Sobolev embedding
IO prey < CIFO)He(r2), s> 1,

where C is independent of p € [2, 0], then we have

t
IVO(8)]|r < C |18l ym exp{/ Hvu(r)”mdf} <C forallte[0,T]
0

where C is independent of p.
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Passing to the limit p — oo in above inequality, we obtain
IVO(t)[| e < C(T, lluollpz » 100l gm) - VE € [0, T].

This implies that condition (3.24) holds true, and according to
Theorem 3.5, we obtain a unique solution of (3.22) such that
(u,0) € C([0,00); H™ (R?)). By (3.28), (3.29) and the itera-
tion process, we construct u € L[?(0,00; H™** (R?)) and 6 €
L% (0,00; H™# (R?)), and we complete the proof of Theorem 3.4.
g
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L Fractional dissipation case

The Critical Dissipation
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