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Theory on Well-posedness of Boussinesq Equations

Background

The standard 2D Boussinesq equation can be written as
~vt + ~v · ∇~v = −∇p + ν∆~v + θ~e2,
∇ · ~v = 0,
θt + ~v · ∇θ = κ∆θ,

• ~v(t, x): the 2D velocity field

• p(t, x): the pressure

• θ(t, x): the temperature in the content of thermal convection

and the density in the modeling of geophysical fluids

• ν: the viscosity

• κ: the thermal diffusivity

• ~e2 = (0, 1) is the unit vector in the vertical direction.
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Theory on Well-posedness of Boussinesq Equations

Background

The Boussinesq equations model large scale atmospheric and

oceanic flows that are responsible for cold fronts and the jet

stream.

• A.E. Gill, Atmosphere-Ocean Dynamics, Academic Press

(London), 1982.

• J. Pedlosky, Geophysical Fluid Dyanmics, Springer-Verlag, New

York, 1987.

In addition, the Boussinesq equations also play an important in the

study of Rayleigh-Benard convection.

• P. Constantin and C.R. Doering Infinite Prandtl number convec-

tion, J. Statistical Physics 94 (1999).
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Theory on Well-posedness of Boussinesq Equations

Background

Mathematically the 2D Boussinesq equations serve as a lower

dimensional model of the 3D hydrodynamics equations. In fact,

the 2D Boussinesq equations retain some key features of the 3D

Euler and Navier-Stokes equations such as the vortex stretching

mechanism. The inviscid 2D Boussinesq equations are identical to

the Euler equations for the 3D axisymmetric swirling flows.

• A.J. Majda and A.L. Bertozzi, Vorticity and Incompressible Flow,

Cambridge University Press, 2001.
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Theory on Well-posedness of Boussinesq Equations

Background

3D rotating Boussinesq equations =⇒
1. primitive equations

2. 2D Boussinesq equations

3. surface quasi-geostrophic (SQG) equation

Fluid flows in atmosphere and ocean have two distinctive features:

rotation and stratification. The simplest model that contains both

features is the 3D rotating Boussinesq equation:
∂t~u + ~u · ∇~u + f ~e3 × ~u = ν∆~u − 1

ρb
∇p + ρg ~e3,

∇ · ~u = 0,

∂tρ+ ~u · ∇ρ = κ∆ρ,

(1.1)

where f = 2Ω sinφ with Ω being the angular frequency of

planetary rotation and φ the latitude, ρb is a constant for reference

density, ~e3 = (0, 0, 1), f ~e3 × ~u represents the Coriolis forcing.
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Theory on Well-posedness of Boussinesq Equations

Background

More explicitly, if ~u = (u, v ,w), then

f ~e3 × ~u = f

−vu
0


and (1.1) becomes

∂tu + u∂xu + v∂yu + w∂zu − fv = ν∆u − 1
ρb
∂xp,

∂tv + u∂xv + v∂yv + w∂zv + fu = ν∆v − 1
ρb
∂yp,

∂tw + u∂xw + v∂yw + w∂zw = ν∆w − 1
ρb
∂zp + ρg ,

∂xu + ∂yv + ∂zw = 0,

∂tρ+ u∂xρ+ v∂yρ+ w∂zρ = κ∆ρ.

(1.2)
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Theory on Well-posedness of Boussinesq Equations

Background

For atmospheric and oceanic flows in the mid-latitude, the

w−equation can be simplified. The terms involving w in the

w−equation are small and the w -equation is reduced to

1

ρb
∂zp − ρg = 0. (1.3)

This is the so called the hydrostatic balance. (1.3) provides a

special solution of (1.2). In fact, ~u = 0 with p and ρ satisfying

(1.3) solves (1.2). The system of equations containing the

u-equation, the v -equation in (1.2) and

1

ρb
∂zp − ρg = 0,

∂xu + ∂yv + ∂zw = 0,

∂tρ+ u∂xρ+ v∂yρ+ w∂zρ = κ∆ρ

are called the primitive equations.
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Theory on Well-posedness of Boussinesq Equations

Background

If f ≡ 0, (1.2) becomes the 3D Boussinesq equations without

rotation. If f ≡ 0 and all physical quantities are independent of z ,

then (1.2) reduces to the 2D Boussinesq equations, which read
∂tu + u∂xu + v∂yu = −∂xp + ν∆u,

∂tv + u∂xv + v∂yv = −∂yp + ν∆v + θ,

∂xu + ∂yv = 0,

∂tθ + u∂xθ + v∂yθ = κ∆θ.
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Theory on Well-posedness of Boussinesq Equations

Background

Under some circumstances, the 3D rotation Boussinesq reduces to

the surface quasi-geostrophic (SQG) equation. The Rossby number

indicates the ratio of the inertial to the strength of rotation. In

low-pressure systems, the Rossby number is small and the balance

is between Coriolis and pressure forces, namely

f ~e3 × ~u = − 1

ρb
∇p.

This is the so-called geostrophic balance. In terms of their

components,

f

(
−v
u

)
= − 1

ρb

(
∂xp
∂yp

)
or simply f ρb ~uH = ∇⊥p. After ignoring the dissipation and

removing the geostrophic balance from (1.2),

∂tu + u∂xu + v∂yu = 0,

∂tv + u∂xv + v∂yv = 0.
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Theory on Well-posedness of Boussinesq Equations

Background

Then, ω = ∂xv − ∂yu satisfies

∂tω + u∂xω + v∂yω = 0,
Dω

Dt
= 0. (1.4)

In terms of the stream function ψ,

ω = ∆ψ = ∂2
xψ + ∂2

yψ +
∂

∂z

((
f

N

)2 dψ

dz

)

where N =
√
−g∂z ρ̄ denotes the the buoyancy frequency. (1.4)

indicates that, if ω is a constant initially, it remains a constant.

Suppose that ω0 = 0 and re-scaling the z−component, we find

that

∆ψ = 0.
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Theory on Well-posedness of Boussinesq Equations

Background

In addition, for small Rossby number and through re-scaling,

ρ =
∂ψ

∂z
and

∂tρ+ u∂xρ+ v∂yρ = 0 or
Dρ

Dt
= 0.

Lemma

If g is a bounded smooth function in Rd , then{
∆ψ = 0 Rd × R+

ψ = g Rd

has a bounded smooth solution ψ, and

∂ψ

∂z

∣∣∣
z=0

= (−∆)
1
2 g on Rd
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Theory on Well-posedness of Boussinesq Equations

Background

Applying above lemma and writing θ for ρ, we obtain{
∂tθ + u∂xθ + v∂yθ = 0

u = ∇⊥ψ, (−∆)
1
2ψ = θ,

which is the SQG equation.
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Theory on Well-posedness of Boussinesq Equations

Background

2.1
Local existence and blow-up criterion
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local existence and blow-up criterion

In this section, we introduce the local existence and uniqueness of

smooth solutions of the inviscid Boussinesq equations by Chae

Dongho. They also obtain a blow-up criterion for these smooth

solutions.

• Chae, Dongho; Nam, Hee-Seok, Local existence and blow-up

criterion for the Boussinesq equations. Proc. Roy. Soc. Edinburgh

Sect. A 127 (1997), no. 5, 935–946.
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Sobolev space

Sobolev space

W k,p(Ω) := {u(x) ∈ Lp(Ω) |Dαu ∈ LP(Ω), 0 ≤ |α| ≤ k}

with the standard norm given by

‖u‖p
W k,p(Ω)

:=
∑

0≤|α|≤k

‖∂αu‖pLp(Ω) , 1 ≤ p <∞;

‖u‖W k,∞(Ω) :=
∑

0≤|α|≤k

‖∂αu‖L∞(Ω) .

Denote Hm = W m,2 .

Introduce the function space

V m(R2) = {v ∈ Hm(R2);∇ · v = 0}.
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Sobolev space

Set Λ = (−∆)
1
2 .

Product estimates

‖Λs(uv)‖Lp ≤ C (‖u‖Lp1‖Λsv‖Lp2 + ‖v‖Lp3‖Λsu‖LP4 ),

where 1
p = 1

p1
+ 1

p2
= 1

p3
+ 1

p4
, p, p2, p4 ∈ (1, ∞).

Commutator Estimate (1 < p <∞, s ≥ 0)

‖Λs(u v)− u Λsv‖Lp ≤ C (‖∇u‖Lp1‖Λs−1v‖Lp2 + ‖v‖Lp3‖Λsu‖Lp4 ),

where 1
p = 1

p1
+ 1

p2
= 1

p3
+ 1

p4
, p, p2, p4 ∈ (1, ∞).

Gagliado-Nirenberg inequality

‖Λsu‖Lp ≤ C‖Λs1u‖θLp1‖Λs2u‖1−θ
Lp2 ,

where 0 < θ < 1, 1 ≤ p, p1, p2 ≤ ∞
n

p
− s = θ

(
n

p1
− s1

)
+ (1− θ)

(
n

p2
− s2

)
.
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Sobolev space

Lemma (The Hodge Decomposition in Hm)

Every vector field v ∈ Hm
(
Rd
)
, m ∈ Z+ ∪ {0}, has the unique

orthogonal decomposition

v = w +∇ϕ,

such that the Leray’s projection operator Pv = w on the
divergence-free functions satisfies
(i) Pv, ∇ϕ ∈ Hm,

∫
RN Pv · ∇ϕdx = 0, divPv = 0, and

‖Pv‖2
m + ‖∇ϕ‖2

m = ‖v‖2
m,

(ii) P commutes with the distribution derivatives,

PDαv = DαPv , ∀v ∈ Hm, |α| ≤ m,
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Sobolev space

Lemma 2

(iii) P commutes with mollifiers Jε,

P (Jεv) = Jε(Pv), ∀v ∈ Hm, ε > 0.

(iv) P is symmetric,

(Pu, v)m = (u,Pv)m.

(Details see p71,99 of A.J. Majda and A.L. Bertozzi, Vorticity and

Incompressible Flow.)
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

For 2D inviscid Boussinesq eqautions with a external potential

force f (t, x)(i.e. curl f = 0)
vt + v · ∇v = −∇p + θf , t ∈ R+, x ∈ R2,
θt + v · ∇θ = 0,
∇ · v = 0,
v |t=0 = v0, θ|t=0 = θ0.

(2.1)

Theorem 1 (Chae, Dongho; Nam, Hee-Seok 1997)

Let the initial data (v0, θ0) ∈ V m
(
R2
)
× H m

(
R2
)

and suppose
that f ∈ L∞loc

(
[0,∞);W m,∞ (R2

))
for some m > 2. Then there

exists the unique solution (v , θ) ∈ C
(
[0,T ];V m

(
R2
)
× H m

(
R2
))

to the Boussinesq equations (2.1).
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

Mollifier

Mollifier: The function satisfies the following conditions,

ρ(x) ∈ C∞0 (R2), ρ(x) ≥ 0,

∫
R2

ρ(x)dx = 1.

The mollification Jεv of functions v ∈ Lp(R2) for 1 ≤ p ≤ ∞ and

ε > 0

(Jεv)(x) = ε−2

∫
R2

ρ

(
x − y

ε

)
v(y)dy , ε > 0.
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

Lemma 1

Let Jε be the mollifier defined as above. Then:

(i) ‖Jεv‖C 0 ≤ ‖v‖C 0 , ∀v ∈ C 0
(
R2
)

;

(ii) DαJεv = JεD
αv , ∀|α| ≤ m, v ∈ Hm

(
R2
)

;

(iii) limε↘0 ‖Jεv − v‖Hm = 0, ∀v ∈ Hm
(
R2
)

;

(iv) for all v ∈ Hm
(
R2
)
, k ∈ N ∪ {0}, ε > 0,

‖Jεv‖Hm+k ≤
cm,k
εk
‖v‖Hm and ‖JεDkv‖C0 ≤

ck
ε1+k
‖v‖L2 ;

(v)
∫
R2 (Jεu) vdx =

∫
R2 u (Jεv) dx , ∀u ∈ Lp

(
R2
)
, v ∈ Lq

(
R2
)
,

(1/p) + (1/q) = 1.

(Details see p131 of A.J. Majda and A.L. Bertozzi, Vorticity and

Incompressible Flow.)
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

Now, we regularise the Boussinesq equations (2.1) as follows:

v εt + Jε ((Jεε
ε) · ∇ (Jεv

ε)) = −∇pε + θεf ,

θεt + Jε ((Jεv
ε) · ∇ (Jεθ

ε)) = 0,

div v ε = 0.

(2.2)

Projecting (2.2) onto V m
(
R2
)
, we eliminate ∇pε and the incom-

pressibility condition div v ε = 0.

v εt = −PJε ((Jεv
ε) · ∇ (Jεv

ε)) + P (θεf ) ,

θεt = −Jε ((Jεv
ε) · ∇ (Jεθ

ε)) ,

v ε|t=0 = v0, θε|t=0 = θ0.

(2.3)
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

We consider

ṽ ε =

(
v ε

θε

)
∈ V m

(
R2
)
× H m

(
R2
)

with the norm

‖ṽ ε‖m := ‖v ε‖Vm + ‖θε‖Hm .

Thus we reduce the regularised Boussinesq equations (2.3) to
d

dt
ṽ ε = Fε (ṽ ε) ,

ṽ ε|t=0 = ṽ ε0 =

(
v0

θ0

)
,

(2.4)
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

where

Fε (ṽ ε) = Fε

(
v ε

θε

)
=

(
F 1
ε (ṽ ε)

F 2
ε (ṽ ε)

)
=

(
−PJε ((Jεv

ε) · ∇ (Jεv
ε)) + P (θεf )

−Jε ((Jεv
ε) · ∇ (Jεθ

ε))

)
.

By Picard’s theorem for ODEs in a Banach space, we can prove

local existence and uniqueness of solutions ṽ ε.
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

Lemma 2

Let Fε : V m
(
R2
)
× H m

(
R2
)
→ V m

(
R2
)
× H m

(
R2
)

be defined

as above for some m > 1. Suppose that f ∈W m,∞ (R2 ). Then Fε
is locally Lipschitz continuous.

Proof. First we prove

Fε : Vm
(
R2
)
× Hm

(
R2
)
→ Vm

(
R2
)
× Hm

(
R2
)

Since div v ε = 0, and divPu = 0, ∀u ∈ Hm
(
R2
)
, we get

F 1
ε (ṽ ε) ∈ Vm

(
R2
)

and F 2
ε (ṽ ε) ∈ Hm

(
R2
)
.
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

Let (
F 1
ε (ṽ ε)

F 2
ε (ṽ ε)

)
=

(
−PJε ((Jεv

ε) · ∇ (Jεv
ε)) + P (θεf )

−Jε ((Jεv
ε) · ∇ (Jεθ

ε))

)
=:

(
F 11
ε (ṽ ε) + F 12

ε (ṽ ε)
F 2
ε (ṽ ε)

)
.

For F 11
ε∥∥F 11
ε (ṽ ε1)− F 11

ε (ṽ ε2)
∥∥
Vm ≤‖PJε ((Jεv

ε
1) · ∇ (Jε (v ε1 − v ε2)))‖Hm

+ ‖PJε((Jε(v
ε
1 − v ε2)) · ∇Jεv ε2)‖Hm

= : I + II .
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

Since m > 1, the commutator-type estimate (see p129 of A.J.

Majda and A.L. Bertozzi, Vorticity and Incompressible Flow.)

provides us with

I = ‖PJε ((Jεv
ε
1 ) · ∇ (Jε (v ε1 − v ε2 )))‖Hm

≤ C‖(Jεv ε1 ) · ∇ (Jε (v ε1 − v ε2 )) ‖Hm

≤ C{‖Jεv ε1‖L∞ ‖∇Jε (v ε1 − v ε2 )‖Hm + ‖Jεv ε1‖Hm ‖∇Jε (v ε1 − v ε2 )‖L∞}

≤ C

ε
‖v ε1‖Hm ‖v ε1 − v ε2‖Hm .

Here we used the Lemma 1 (iv) in the last inequality. Similarly, we

obtain

II ≤ C

ε
‖v ε2‖Hm ‖v ε1 − v ε2‖Hm .
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

On the other hand, since m > 1,∥∥F 12
ε (ṽ ε1 )− F 12

ε (ṽ ε2)
∥∥
Hm = ‖P (θε1f )− P (θε2f )‖Hm

≤ ‖θε1 − θε2‖Hm ‖f ‖Wm,∞ .

Combining the above estimates, we have

‖F 1
ε (ṽ ε1 )−F 1

ε (ṽ ε2) ‖m ≤ C (ε, ‖f ‖Wm,∞ , ‖ṽ ε1‖Hm , ‖ṽ ε2‖Hm)‖ṽ ε1−ṽ ε2‖m.

For F 2
ε (ṽ ε), which estimate is similar with F 11

ε , we obtain

‖F 2
ε (ṽ ε1 )−F 2

ε (ṽ ε2) ‖m ≤
C

ε
‖ṽ ε1‖Hm‖θε1−θε2‖Hm ≤ C (ε, ‖ṽ ε1‖Hm)‖ṽ ε1−ṽ ε2‖m.
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

Finally, we have

‖Fε (ṽ ε1 )−Fε (ṽ ε2) ‖m ≤ C (ε, ‖f ‖Wm,∞ , ‖ṽ ε1‖Hm , ‖ṽ ε2‖Hm)‖ṽ ε1− ṽ ε2‖m.

�
The following is a corollary of Picard’s theorem and the above

Lemma.

Proposition 1

Let ṽ0 ∈ V m
(
R2
)
×Hm

(
R2
)

for m > 1 be given and suppose that
f ∈ L∞

(
[0,T ];W m,∞ (R2

))
. Then, for any given ε > 0, there

exists the unique solution ṽ ε ∈ C 1
(
[0,Tε) ;V m

(
R2
)
× H m

(
R2
))

for some Tε = Tε (‖ṽ0‖m) > 0.
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

Next, we continue the local solution of the regularised problem glob-

ally in time.

Proposition 2

Under the same assumptions as in Proposition 1, for any ε > 0, the
regularised solution ṽ ε exists globally in time,

ṽ ε ∈ C 1
(
[0,∞);V m

(
R2
)
× Hm

(
R2
))
.

Proof. First, we prove the L2-energy estimate. we take the L2-

inner product of the equation (2.3) with v ε and θε, respectively,

and integrate by parts, so that we have

1

2

d

dt
‖v ε(·, t)‖2

L2 ≤ ‖P (θεf ) v ε(·, t)‖L1

≤ ‖f (·, t)‖L∞ ‖θε(·, t)‖L2 ‖v ε(·, t)‖L2 ,
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

and
1

2

d

dt
‖θε(·, t)‖2

L2 = 0.

Thus we get ‖θε(·, t)‖L2 = ‖θ0‖L2 for all t = 0, and

d

dt
‖ṽ ε(·, t)‖0 ≤ ‖θ0‖L2 ‖f (·, t)‖L∞ .

Integrating over [0, t], we obtain

sup
0≤t≤T

‖ṽ ε(·, t)‖0 ≤ ‖ṽ0‖0

(
1 + sup

0≤t≤T
‖f (·, t)‖L∞T

)
.
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

Next, we prove the Hm-energy estimates. Let us consider the first

equation in (2.3),

v εt = −PJε ((Jεv
ε) · ∇ (Jεv

ε)) + P (θεf ) .

We apply the operator Dα on each side of the equation, multiply

the result by Dαv ε, integrate over R2 and sum over |α| ≤ m.

Since divv ε = 0, by calculus inequality, we then have
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

1

2

d

dt
‖vε‖2

Hm

=−
∑
|α|≤m

{∫
R2

(DαPJε ((Jεv
ε) · ∇ (Jεv

ε)))Dαvεdx +

∫
R2

(DαP (θεf ))Dαvεdx

}

=−
∑
|α|≤m

{∫
R2

P(Dα((Jεv
ε) · ∇ (Jεv

ε))− ((Jεv
ε) · ∇Dα (Jεv

ε)))DαJεv
εdx

+

∫
R2

(DαP (θεf ))Dαvεdx

}
≤C

{
‖∇Jεvε‖L∞ ‖v

ε‖Hm + ‖vε‖Hm ‖∇Jεvε‖L∞ + ‖θε‖Hm ‖f ‖Wm,∞}
}
‖vε‖Hm.

Thus we have

d

dt
‖vε(·, t)‖Hm ≤ C

(
‖∇Jεvε(·, t)‖L∞ ‖v

ε(·, t)‖Hm + ‖θε(·, t)‖Hm ‖f (·, t)‖Wm,∞
)

≤ C
(
‖f (·, t)‖Wm,∞ + ‖∇Jεṽε(·, t)‖L∞

)
‖ṽε(·, t)‖m .
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Theory on Well-posedness of Boussinesq Equations

Local well-posedness and blow-up criterion

Local well-posed

Using a similar process to the second equation in (2.3) leads to

d

dt
‖θε(·, t)‖Hm ≤ C ‖∇Jεṽ ε(·, t)‖L∞ (‖v ε(·, t)‖Hm + ‖θε(·, t)‖Hm)

= C ‖∇Jεṽ ε(·, t)‖L∞ ‖ṽ
ε(·, t)‖m .

Combining the above estimates, we get

d

dt
‖ṽ ε(·, t)‖m ≤ C (‖f (·, t)‖Wm,∞ + ‖∇Jεṽ ε(·, t)‖L∞) ‖ṽ ε(·, t)‖m ,

where C is a constant independent of ε > 0. From the above two

energy estimates, we have
d

dt
‖ṽε(·, t)‖m

≤ C
(
‖f (·, t)‖Wm,∞ + ‖∇Jεṽε(·, t)‖L∞

)
‖ṽε(·, t)‖m

≤ C(ε)
(
‖f (·, t)‖Wm,∞ + ‖ṽε(·, t)‖0

)
‖ṽε(·, t)‖m

≤ C(ε){‖f (·, t)‖Wm,∞ + (1 + sup
0≤t≤T

‖f (·, t)‖L∞T ) ‖ṽ0‖0 + ‖θ0‖L2} ‖ṽε(·, t)‖m

≤ C(ε, sup
0≤t≤T

‖f (·, t)‖Wm,∞ , ‖ṽ0‖0 ,T ) ‖ṽε(·, t)‖m .
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Local well-posed

Then Gronwall’s inequality gives

sup
0≤t≤T

‖ṽ ε(·, t)‖m ≤ ‖ṽ0‖m exp[C (ε, sup
0≤t≤T

‖f (·, t)‖Wm,∞ , ‖ṽ0‖0 ,T )].

Thus by the standard continuation principle for ordinary differential

equations, We obtain the global existence. �

Remark: A similar argument to the original Boussinesq equations

(2.1) gives the following Hm-energy estimate:

d

dt
‖ṽ(·, t)‖m ≤ C (‖f (·, t)‖Wm,∞ + ‖∇ṽ(·, t)‖L∞) ‖ṽ(·, t)‖m ,

(2.5)

which will be used to prove the blow-up criterion of Boussinesq

equations.
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Local well-posed

In order to get the existence of smooth solutions locally in time

for the original Boussinesq equations (2.1), we need the following

uniform estimates of ṽ ε.

Lemma 3

Let the initial condition ṽ0 ∈ Vm
(
R2
)
× Hm

(
R2
)
,

f ∈ L∞loc([0,∞);Wm,∞ (R2
)
) for some m > 2. Then:

(i) (ṽ ε) is uniformly bounded in C
(
[0, t];Vm

(
R2
)
× Hm

(
R2
))

for
some time T with the rough upper bound

T =
1

2C (1 + sup
0≤t≤T0

‖f (·, t)‖Wm,∞) (1 + ‖ṽ0‖m)
;

(ii) (d/dt ṽ ε) is uniformly bounded in C ([0,T ];Vm−1(R2) ×
Hm−1(R2)) for the above time T .
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Local well-posed

Proof. From the inequality (2.5), since m > 2,

d

dt
‖ṽ ε(·, t)‖m ≤ C (‖f (·, t)‖Wm,∞ + ‖ṽ ε(·, t)‖m) ‖ṽ ε(·, t)‖m

≤ C (1 + ‖f (·, t)‖Wm,∞) (1 + ‖ṽ ε(·, t)‖m)2 .

Using the generalised Gronwall’s inequality, we have

1 + ‖ṽ ε(·, t)‖m ≤
(cm + 1) (1 + ‖ṽ0‖m)

1− C (1 + ‖ṽ0‖m) (1 + sup
0≤t≤T

‖f (·, t)‖Wm,∞)t
,

This says that the family (ṽ ε) is uniformly bounded in Hm, m > 2.

sup
0≤t≤T

‖ṽ ε(·, t)‖m ≤ 2 (cm + 1) (1 + ‖ṽ0‖m)

for

T =
1

2C (1 + ‖ṽ0‖m) (1 + sup
0≤t≤T0

‖f (·, t)‖Wm,∞)

This proves (i).
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Local well-posed

From the equation (2.4), we get∥∥∥∥ d

dt
ṽ ε
∥∥∥∥
m−1

≤‖PJε ((Jεv
ε) · ∇ (Jεv

ε))‖Hm−1 + ‖P (θεf )‖Hm−1

+ ‖Jε ((Jεv
ε) · ∇ (Jεθ

ε))‖Hm−1

≤ (1 + ‖f ‖Wm−1,∞) ‖ṽ ε‖2
m .

This gives the uniform boundedness of (d/dt ṽ ε) in Vm−1(R2) ×
Hm−1(R2) and the proof is complete. �
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Local well-posed

Proof of Theorem 1.

Applying the Arzela-Ascoli theorem to the results of Lemma 3, we

know that the family (ṽ ε) is precompact in C ([0,T ];Vm−1
loc (R2) ×

Hm−1
loc (R2))(which is also precompact in C ([0,T ];V s

loc (R2)×Hs
loc (R2))

for all s < m. ).

Since m > 2, (ṽ ε) is also precompact in C ([0,T ];C 1
loc (R2) ×

C 1
loc (R2)). Thus passing to the limit, we get that the limit function

ṽ ∈ C ([0,T ];Vm(R2)× Hm(R2)) satisfies

ṽt =

(
−P(v · ∇v) + P(θf )

−(v · ∇θ)

)
.

The first equation P (vt + (v · ∇v)− θf ) = 0 implies

vt + (v · ∇v)− θf = ∇p,

for some scalar function p = p(x , t). Hence ṽ is a solution of the

Boussinesq equations (2.1). 41 / 124
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Local well-posed

Proof of Uniqueness. Let

ṽ1 =

(
v1

θ1

)
, ṽ2 =

(
v2

θ2

)
be two solutions with the same initial data. If we set v = v1 − v2,

θ = θ1 − θ2, p = p1 − p2, then v |t=0 = v0 = 0, θ|t=0 = θ0 = 0.

After subtracting corresponding terms, we get{
vt + v1 · ∇v + v · ∇v2 = −∇p + θf ,
θt + v1 · ∇θ + v · ∇θ2 = 0.

Taking the L2-inner product with v and θ respectively, we obtain

d

dt
‖ṽ‖0 ≤ (‖f ‖L∞ + ‖∇ṽ2‖L∞) ‖ṽ‖0.

Since ṽ2 ∈ Vm
(
R2
)
× Hm

(
R2
)

and m > 2,

‖∇v2‖L∞ ≤ ‖v2‖Hm and ‖∇θ2‖L∞ ≤ ‖θ2‖Hm .
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Local well-posed

Then Gronwall’s inequality gives

ṽ =

(
v
θ

)
≡ 0

and the proof is complete. �
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Local well-posed

Blow-up Criterion
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Blow-up criterion

Blow-up criterion

Theorem 2 (Chae, Dongho; Nam, Hee-Seok 1997)

Let the initial data v0 ∈ Vm
(
R2
)
, θ0 ∈ Hm

(
R2
)

for some m > 2
and suppose that f ∈ L∞

(
[0,T ];Wm,∞ (R2

))
. Then we have:

lim sup
t↗T

(‖v(·, t)‖Hm + ‖θ(·, t)‖Hm) =∞

if and only if ∫ T

0
‖∇θ(·, τ)‖L∞dτ =∞.
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Blow-up criterion

Proof. (Necessity) Suppose v and θ remain smooth on the time

interval [0,T ], i.e.

sup
0≤t≤T

(‖v(·, t)‖Hm + ‖θ(·, t)‖Hm) ≤ CT <∞.

Since m > 2, by the Sobolev inequality,

‖∇θ(·, t)‖L∞ ≤ ‖θ(·, t)‖m ≤ CT , 0 ≤ t ≤ T . (2.6)

This implies ∫ T

0
‖∇θ(·, τ)‖L∞dτ ≤ MT <∞.

(Sufficiency) Suppose that∫ T

0
‖∇θ(·, τ)‖L∞dτ ≤ MT .
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Blow-up criterion

We apply the curl operator to the first equation in (2.1).

ω = curl v =
∂

∂x1
v2 −

∂

∂x2
v1

can be read as a scalar function and we have

ωt + v · ∇ω = (∇θ × f ) · e3,

with the initial condition ω|t=0 = ω0 = curl v0. Integrating over

[0, t], we obtain

ω (Ψt(α), t) = ω0(α) +

∫ t

0
((∇θ × f ) · e3) (Ψs(α), s) ds,

where Ψt(α) is the particle trajectories defined by the following

ordinary differential equations:
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Blow-up criterion

{
d

dt
Ψt(α) = v (Ψt(α), t) ,

Ψt(α)|t=0 = α.

Using the generalised Minkowski inequality, we obtain

‖ω(·, t)‖Lp ≤ ‖ω0‖Lp +

∫ T

0
‖∇θ(·, τ)‖Lp‖f (·, τ)‖L∞dτ. (2.7)

Moreover, we can see that

‖ω(·, t)‖L∞ ≤ ‖ω0‖L∞ +

∫ T

0
‖∇θ(·, τ)‖L∞‖f (·, τ)‖L∞dτ

≤ C (‖v0‖Hm , ‖θ0‖Hm , sup
0≤t≤T

‖f (·, t)‖L∞ ,MT ).
(2.8)
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Blow-up criterion

On the other hand, we apply the gradient operator to the second

equation in (2.1) to get

∇θt + (v · ∇)∇θ = −∇v∇θ.

Similarly to the above, we obtain

‖∇θ(·, t)‖Lp ≤ ‖∇θ0‖Lp +

∫ T

0
‖∇θ(·, τ)‖L∞‖∇v(·, τ)‖Lpdτ

≤ ‖∇θ0‖Lp + Cp

∫ T

0
‖∇θ(·, τ)‖L∞‖ω(·, τ)‖Lpdτ,

(2.9)

where we used the ‖∇v‖Lp ≤ Cp‖ω‖Lp with 1 < p <∞ (Calderon-

Zygmund inequality) in the last inequality. Combining (2.7) with

(2.9), we obtain

‖ω(·, t)‖Lp + ‖∇θ(·, t)‖Lp ≤ ‖ω0‖Lp + ‖∇θ0‖Lp
+Cp

∫ T
0 (‖f (·, τ)‖L∞ + ‖∇θ(·, τ)‖L∞) (‖ω(·, τ)‖Lp + ‖∇θ(·, τ)‖Lp) dτ.
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Blow-up criterion

Then Gronwall’s inequality gives

‖ω(·, t)‖Lp + ‖∇θ(·, t)‖Lp
≤ (‖ω0‖Lp + ‖∇θ0‖Lp) exp

[
Cp

∫ t
0 (‖f (·, t)‖L∞ + ‖∇θ(·, τ)‖L∞) dτ

]
≤ C (‖v0‖Hm + ‖θ0‖Hm) exp

[
Cp

∫ t
0 (‖f (·, τ)‖L∞ + ‖∇θ(·, τ)‖L∞) dτ

]
≤ C

(
‖v0‖Hm , ‖θ0‖Hm, sup0≤t≤T ‖f (·, t)‖L∞,MT

,Cp

)
,

(2.10)

where we used

‖ω0‖Lp ≤ C (p−2)/p ‖ω0‖(2/p)+(m−2)(p−2)/(m−1)p
L2

∥∥Dm−1ω0

∥∥(p−2)/(m−1)p

L2

≤ C ‖v0‖Hm , C = 1, p = 2,

and similarly

‖∇θ0‖Lp ≤ C ‖θ0‖Hm.
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Blow-up criterion

Now, recall the following well-known result (see e.g. Beale, J. T.;

Kato, T.; Majda, A. Remarks on the breakdown of smooth solutions

for the 3-D Euler equations. Comm. Math. Phys.(1984)):

‖∇v(·, t)‖L∞ ≤ C
{

1 +
(
1 + ln+ ‖v(·, t)‖Hm

)
‖ω(·, t)‖L∞ + ‖ω(·, t)‖Lp

}
.

Using (2.10) and (2.8) , the above inequality gives

‖∇v(·, t)‖L∞
≤C (‖v0‖Hm, sup

0≤t≤T
‖f (·, t)‖L∞ ,MT ,Cp)

(
1 + ln+ ‖v(·, t)‖Hm

)
Applying (2.6) and above inequality to the Hm-energy estimate

(2.5), we obtain

d

dt
‖ṽ(·, t)‖m ≤ C (‖v0‖Hm , ‖θ0‖Hm , sup

0≤t≤T
‖f (·, t)‖Wm,∞ ,MT ,Cp)

·
(
1 + ln+ ‖ṽ(·, t)‖m

)
‖ṽ(·, t)‖m.
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Blow-up criterion

Then Gronwall’s inequality gives

sup
0≤t≤T

‖ṽ ε‖m ≤ C (‖v0‖Hm , ‖θ0‖Hm , ‖f (·, t)‖Wm,∞ ,MT ,Cp) .

This concludes the proof. �
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Blow-up criterion

Application

As an application to the blow-up criterion, we prove global existence

of smooth solutions in the case of zero external force. Suppose f =

0. Then the Boussinesq equations (2.1) become
vt + (v · ∇)v = −∇p
θt + v · ∇θ = 0 (t, x) ∈ R+ × R2

div v = 0
v |t=0 = v0, θ|t=0 = θ0, x ∈ R2

(2.11)

Theorem 3

Let v0 ∈ Vm
(
R2
)
, θ0 ∈ Hm

(
R2
)
, m > 2. Then the solution (v , θ)

to the reduced Boussinesq equations (2.11) remains smooth
globally in time.
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Blow-up criterion

Proof. First, we observe that

‖ω(·, t)‖L∞ ≤ ‖ω0‖L∞, ‖ω(·t)‖L2 ≤ ‖ω0‖L2 . (2.12)

From the second equation in (2.11), we obtain

d

dt
‖θ(·, t)‖Hm ≤ C (‖∇θ(·, t)‖L∞‖v(·, t)‖Hm + ‖∇v(·, t)‖L∞‖θ(·, t)‖Hm)

≤ C‖v(·, t)‖Hm‖θ(·, t)‖Hm.

Then Gronwall’s inequality gives us

‖θ(·, t)‖Hm ≤ ‖θ0‖Hm exp

[
C

∫ t

0
‖v(·, τ)‖Hmdτ

]
. (2.13)

On the other hand, the first equation in (2.11) gives

d

dt
‖v(·, t)‖Hm ≤ C‖∇v(·, t)‖L∞‖v(·, t)‖Hm ,
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Blow-up criterion

so that

‖v(·, t)‖Hm ≤ ‖v0‖Hm exp

[
C

∫ t

0
‖∇v(·, τ)‖L∞dτ

]
, (2.14)

Applying (2.12) and (2.14) to

‖∇v(·, t)‖L∞ ≤ C{1+
(
1 + ln+ ‖v(·, t)‖Hm

)
‖ω(·, t)‖L∞+‖ω(·, t)‖Lp},

we obtain

‖∇v(·, t)‖L∞ ≤ C

(
1 +

∫ t

0
‖∇v(·, τ)‖L∞dτ

)
.

Then Gronwall’s inequality gives

sup
0≤t≤T

‖∇v(·, t)‖L∞≤ ≤ ‖∇v0‖L∞ exp[CT ]. (2.15)
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Blow-up criterion

Combining (2.15), (2.14), (2.13) and using the fact

‖∇θ‖L∞ ≤ ‖θ‖Hm , we obtain∫ T

0
‖∇θ(·, τ)‖L∞dτ ≤ MT <∞, ∀T > 0.

Then Theorem 3 gives the desired results and the proof is

complete. �
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Global well-posedness in 2-dimension

Besov Space

Besov Space and its Properties

• Bahouri Hajer, Chemin Jean-Yves, Danchin Raphaël, Fourier

analysis and nonlinear partial differential equations. Springer,

Heidelberg, 2011.
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Besov Space

Lemma (Bernstein inequality)

Let C be a ring, B a ball. A constant C exists so that, for any non
negative integer k, any smooth homogeneous function σ of degree
m, any couple of real (a, b) so that b ≥ a ≥ 1 and any function u
of La, we have

Supp û ⊂ λB ⇒ sup
α=k
‖∂αu‖Lb ≤ C k+1λk+d( 1

a
− 1

b )‖u‖La ;

Supp û ⊂ λC ⇒ C−k−1λk‖u‖La ≤ sup
α=k
‖∂αu‖La ≤ C k+1λk‖u‖La ;

Supp û ⊂ λC ⇒ ‖σ(D)u‖Lb ≤ Cσ,mλ
m+d( 1

a
− 1

b )‖u‖La
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Besov Space

Proposition (Dyadic Partition of Unity)

Let us define by C the ring of center 0 , of small radius 3/4 and
great radius 8/3 . It exists two radial functions χ and ϕ the values
of which are in the interval [0, 1], belonging respectively to
D(B(0, 4/3)) and to D(C) such that

∀ξ ∈ Rd , χ(ξ) +
∑
j≥0

ϕ
(
2−jξ

)
= 1,

∀ξ ∈ Rd\{0},
∑
j∈Z

ϕ
(
2−jξ

)
= 1,

|j − j ′| ≥ 2⇒ Suppϕ
(
2−j ·

)
∩ Suppϕ

(
2−j

′ ·
)

= ∅,
j ≥ 1⇒ Suppχ ∩ Suppϕ

(
2−j ·

)
= ∅
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Besov Space

Proposition 3.1 (Dyadic Partition of Unity)

If C̃ = B(0, 2/3) + C, then C̃ is a ring and we have∣∣j − j ′
∣∣ ≥ 5⇒ 2j

′ C̃ ∩ 2jC = ∅,

∀ξ ∈ Rd ,
1

3
≤ χ2(ξ) +

∑
j≥0

ϕ2
(
2−jξ

)
≤ 1,

∀ξ ∈ Rd\{0}, 1

2
≤
∑
j∈Z

ϕ2
(
2−jξ

)
≤ 1.
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Besov Space

Notations

∆−1u = χ(D)u = F−1(χ(ξ)û(ξ))

if j ≥ 0, ∆ju = ϕ
(
2−jD

)
u,

if j ≤ −2, ∆ju = 0,

Sju =
∑

j ′≤j−1

∆pu = χ
(
2−jD

)
u,

if j ∈ Z, ∆̇ju = ϕ
(
2−jD

)
u, Ṡju =

∑
j ′≤j−1

∆̇pu.

Quasi-orthogonality:

|j − k | ≥ 2, ∆j∆ku = 0,

|j − k | ≥ 5, ∆j (Sk−1u∆kv) = 0.
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Besov Space

Definition

Let us denote by S ′h the space of tempered distribution such that

lim
j→−∞

Ṡju = 0 in S ′.

Proposition

Tempered distribution u belongs to S ′h if and only if, for any θ in
D
(
Rd
)

with value 1 near the origin, we have lim
λ→∞

θ(λD)u = 0 in

S ′.
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Besov Space

Definition (Homogeneous Besov Space)

Let s be a real number and (p, r) be in [1,∞]2. The homogeneous
Besov space Ḃs

p,r consists of those distributions u in S ′h such that

‖u‖Ḃs
p,r

def
=

∑
j∈Z

2rjs
∥∥∥∆̇ju

∥∥∥r
Lp

 1
r

<∞.

Proposition

The space Ḃs
p,r endowed with ‖ · ‖Ḃs

p,r
is a normed space.
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Besov Space

Theorem

For any p in [2,∞), Ḃ0
p,2 is continuously included in Lp and Lp

′
is

continuously included in Ḃ0
p ′,2.

Theorem

For any p in [1, 2], the space Ḃ0
p,p is continuously included in Lp,

and Lp
′

is continuously included in Ḃ0
p ′,p ′ .

Theorem

Let 1 ≤ q < p <∞ and α be a positive real number. A constant
C exists such that

‖f ‖Lp ≤ C‖f ‖1−θ
Ḃ−α∞,∞

‖f ‖θ
Ḃβq,q

with β = α

(
p

q
− 1

)
, θ =

q

p
.
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Besov Space

Definition (Nonhomogeneous Besov space)

Let s ∈ R and 1 ≤ p, r ≤ ∞. The nonhomogeneous Besov space
Bs
p,r consists of all tempered distributions u such that

‖u‖Bs
p,r

def
=
∥∥∥(2js ‖∆ju‖Lp

)
j∈Z

∥∥∥
`r (Z)

<∞.

Proposition

Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞. Then, for any real
number s, the space Bs

p1,r1
is continuously embedded in

B
s−d( 1

p1
− 1

p2
)

p2,r2 .
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Besov Space

Theorem

A constant C exists which satisfies the following properties. If s1

and s2 are real numbers such that s1 < s2, θ ∈ (0, 1), and (p, r) is
in [1,∞], then we have

‖u‖
B
θs1+(1−θs2)
p,r

≤ ‖u‖θ
B

s1
p,r
‖u‖1−θ

B
s2
p,r
,

and

‖u‖
B
θs1+(1−θ)s2
p,1

≤ C

s2 − s1

(
1

θ
+

1

1− θ

)
‖u‖θ

B
s1
p,∞
‖u‖1−θ

B
s2
p,∞
.
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The Bony Decomposition:

Considering two tempered distributions u and v , we have

uv =
∑
j ′,j

∆j ′u∆jv .

Definition (Paraproduct)

The nonhomogeneous paraproduct of v by u is defined by

Tuv
def
=
∑
j

Sj−1u∆jv .

The nonhomogeneous remainder of u and v is defined by

R(u, v) =
∑
|k−j |≤1

∆ku∆jv .
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We have the following Bony decomposition:

uv = Tuv + Tvu + R(u, v).

We shall sometimes also use the following simplified decomposition:

uv = Tuv + T ′v u with T ′v u
def
=
∑
j

Sj+2v∆ju.
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Biot-Savart Law

Biot-Savart Law:

∇ui = C (n)
∑

k

∫
Rn

xk−yk

|x−y |nω
i
k(y)dy ,

‖∇u‖Lp ≤ C p2

p−1‖ω‖Lp , p ∈ (1, ∞).

• Lipschitz initial data: ∇u0 ∈ L∞;

• Yudovich initial data: ω0 ∈ L∞.
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Quasi-geostrophic equation: Global Well-posed

2D Quasi-geostrophic equation:
θt + (u · ∇)θ + κ(−∆)α/2θ = 0, (x , t) ∈ R2 × (0, ∞),

u = (R2θ, −R1θ), Ri =
∂xi√
−∆

.

(3.1)

Subcritical case (α ∈ (1, 2) ):

P. Constantin, J. Wu (1999, Siam MA.): Energy estimates.

Critical case (α = 1):

1. L.A. Caffarelli, A. Vasseur (2010, Annal. Math., 2006):

De Giorgi iteration;

2. A. Kiselev, F. Nazarov, A. Volberg (2007, Invent. Math., 2006):

Moduli of continuity.
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Results of Global Well-posedness
∂tθ + u · ∇θ + κΛαθ = 0,
∂tu + u · ∇u + νΛβu +∇p = e2θ,
u = 0.

ν, κ > 0, α = β = 2: J. Cannon& E. DiBenedetto; B. Guo.

ν > 0, κ = 0, β = 2 or ν = 0, κ > 0, α = 2: D. Chae; T. Hou

& C. Li. (u0, θ0 ∈ Hs , s > 2)

ν > 0, κ = 0, β = 2 or ν = 0, κ > 0, α = 2: T. Hmidi & S.

Keraani; (u0 ∈ B
1+ 2

p

p, 1 , θ0 ∈ Lr , 2 < r ≤ p ≤ ∞.)

ν = 0, κ > 0, α = 2: R. Danchin & M. Paicu. (u0, θ0 ∈
L2, ω0 ∈ Lp ∩ L∞) (ω0 = ∂1u

2
0 − ∂2u

1
0)

ν = 0, κ > 0, α ∈ (1, 2): Hmidi & Zerguine. (2011)

ν = 0, κ > 0, α = 1: Hmidi, Keraani & Rousset. (2011)
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Results of Global Well-posedness

ν, κ > 0, α + β = 2: X. (Nonlinear Anal., 2010.)

0.88 < α < 1, 1−α < β ≤ f (α) < 1: Miao -Xue (NoDEA,’11)

0 < α, β < 1, β > 2/(2 + α): Constantin-Vicol (GAFA,’12)

0.91 < α < 1, α + β = 1: Jiu-Miao-Wu-Zhang (SIAM-MA,’14)

α, β ∈ (0, 1), β > 2−α
2 , β ≥ 2+α

3 : Jiu-Wu-Yang (JDE,’14)

0.798 < α < 1, α + β = 1: Stefanov-Wu (Mathematics, ’15)

α + β > 1, β > 2−α
2 , β ≥ α+2

3 or β > max{2
3 ,

4−α2

4+3α}: X.-

Ye(JDE, ’16)

α + β > 1, α > 0.783: X.-Xue-Ye (MN,’17)

Λαx1
u; Λβx1θ: Wu-Xu-Ye (JMPA, ’18) (1) 1

2 < α ≤ 1, 1
2 ≥

β >
√
α2+2−α

2 , α+β > 1; (2) α+β ≥ 1, β > 2+
√

2
4 .
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Full Dissipation Case
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Full dissipation case

This section deals with the 2D viscous Boussinesq equations,
∂tu + u · ∇u = −∇p + ν∆u + θ~e2,

∇ · u = 0,

∂tθ + u · ∇θ = κ∆θ,

(3.2)

where both ν and κ are positive numbers. The global regularity

can be established for this system of equations.

• J. R. Cannon, E. DiBenedetto, The initial value problem for the

Boussinesq equations with data in Lp, Lecture Notes in Math.,

Vol. 771. Springer, Berlin, 1980, pp.129–144.

Theorem 3.1

Given an initial data (u0, θ0) ∈ H 2(R2). The 2D viscous Boussi-
nesq equations (3.2) have a unique global classical solution (u, θ) ∈
C ([0,∞),H 2).
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Proof. The proof of this result is almost trivial and similar to that

for the 2D Navier-Stokes equations. It suffices to establish the

global H1 bound. First of all, we have the L2-bounds

‖θ‖2
2 + 2κ

∫ t

0
‖∇θ‖2

2dτ = ‖θ0‖2
2,

‖u‖2
2 + 2ν

∫ t

0
‖∇u‖2

2dτ ≤ (‖u0‖2 + t‖θ0‖2)2.

It follows from the vorticity equation

∂tω + u · ∇ω = ν∆ω + ∂x1θ,

that

1

2

d

dt
‖ω‖2

2 + ν‖∇ω‖2
2 ≤ ‖θ‖2

2‖∂x1ω‖2
2 ≤

ν

2
‖∇ω‖2

2 +
1

2ν
‖θ0‖2

2,
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‖ω‖2
2 + ν

∫ t

0
‖∇ω‖2

2dτ ≤ ‖ω0‖2
2 +

1

ν
t‖θ0‖2

2.

By the equation for θ,

1

2

d

dt
‖∇θ‖2

2 +κ‖∆θ‖2
2 ≤

∫
|∇u||∇θ|2dx ≤ C ‖∇u‖3‖∇θ‖2

3. (3.3)

Applying the Gagliardo-Nirenberg inequality

‖f ‖L3(Rd ) ≤ C ‖f ‖1− d
6

L2(Rd )
‖∇f ‖

d
6

L2(Rd )
, (3.4)

with d = 2, namely ‖f ‖3 ≤ C ‖f ‖2/3
2 ‖∇f ‖1/3

2 , we obtain

‖∇u‖3
3 ≤ C ‖∇u‖2

2 ‖∇2u‖2 ≤
ν

2
‖∇2u‖2

2 +
C

ν
‖∇u‖2

2 ‖∇u‖2
2.
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Therefore,

C ‖∇u‖3‖∇θ‖2
3 ≤

ν

2
‖∇2u‖2

2 +
κ

2
‖∇2θ‖2

2 +
C

ν
‖∇u‖2

2 ‖∇u‖2
2

+
C

κ
‖∇θ‖2

2 ‖∇θ‖2
2.

Inserting this inequality in (3.3) and applying the integrability∫ ∞
0
‖∇u‖2

2 dτ <∞,
∫ ∞

0
‖∇θ‖2

2 dτ <∞,

we have, for any T > 0,

‖∇θ(T )‖2
2 + κ

∫ T

0
‖∆θ‖2

2dτ ≤ C (T ).

H 2 norm can be obtained through a similar procedure.
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We would like to point out that (3.4) depends on the dimension d

and a similar procedure does not yield a global H1 bound in the 3D

case. When d = 3, we have

‖∇u‖3
L3(R3) ≤ C ‖∇u‖

3
2

L2(R3)
‖∇2u‖

3
2

L2(R3)
≤ ν

2
‖∇2u‖2

L2(R3)+
C

ν
‖∇u‖4

L2(R3) ‖∇u‖
2
L2(R3).

But now ‖∇u‖4
L2(R3) is no longer time integrable. This completes

the proof of Theorem 3.1. �
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Consider the Cauchy problem of zero diffusivity Boussinesq

equations:

(B1)



∂v

∂t
+ (v · ∇)v = −∇p + ν∆v + θe2,

∂θ

∂t
+ (v · ∇)θ = 0, (t, x) ∈ R+ × R2,

div v = 0,

v(0, x) = v0(x), θ(0, x) = θ0(x).

The global regularity was obtained by T. Hou and C. Li, Global

well-posedness of the viscous Boussinesq equations, Discrete and

Cont. Dyn. Syst. 12 (2005) and by D. Chae, Global regularity for

the 2D Boussinesq equations with partial viscosity terms, Advances

in Math. 203 (2006) .
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The result can be stated as follows.

Theorem 3.2 (T. Hou and C. Li 2005, D. Chae 2006)

Let ν > 0 be fixed, and div v0 = 0. Let m > 2 be an inte-
ger, and (v0, θ0) ∈ Hm(R2). Then, there exists a unique solution
(v , θ) with θ ∈ C ([0,∞);Hm(R2))and v ∈ C ([0,∞);Hm(R2)) ∩
L2(0,T ;Hm+1(R2)) of the system (B1).
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We also write down the zero viscosity Boussinesq equations

(B2)



∂v

∂t
+ (v · ∇)v = −∇p + θe2,

∂θ

∂t
+ (v · ∇)θ = κ∆θ, (t, x) ∈ R+ × R2,

div v = 0,

v(0, x) = v0(x), θ(0, x) = θ0(x).

The following is the global regularity result on (B2).

Theorem 3.3 (D. Chae 2006)

Let κ > 0 be fixed, and div v0 = 0. Let m > 2 be an integer.
Let m > 2 be an integer, and (v0, θ0) ∈ Hm

(
R2
)
. Then, there

exists unique solutions (v , θ) with v ∈ C
(
[0,∞);Hm

(
R2
))

and θ ∈
C
(
[0,∞);Hm

(
R2
))
∩ L2

(
0,T ;Hm+1

(
R2
))

of the system (B2).
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Proof of Theorem 3.2 (ν > 0, κ = 0)

Let T > 0 be a given fixed time. From the second equation of

(B1) we immediately have

‖θ(t)‖Lp 6 ‖θ0‖Lp , ∀t ∈ [0,T ], p ∈ [1,∞].

Taking L2 inner product the first equation of (B1) with v , we have,

1

2

d

dt
‖v‖2

L2 + v‖∇v‖2
L2 6 ‖θ‖L2‖v‖L2 .

Hence,
1

2

d

dt
‖v‖2

L2 6 ‖θ‖L2‖v‖L2 6 ‖θ0‖L2 ‖v‖L2 ,
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Hence, d
dt ‖v‖L2 6 ‖θ0‖, and we obtain

‖v(t)‖L2 6 ‖v0‖L2 + ‖θ0‖L2 T , ∀t ∈ [0,T ]. (3.5)

Taking the operation curl on both sides of the first equation of

(B1), we obtain

ωt + (v · ∇)ω = −θx1? + ν∆ω,

where ω = ∂x1v2 − ∂x2v1. Let p > 2. Multiplying above equation

by ω|ω|p−2 and integrating it over R2, we find,
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1

p

d

dt

∫
R2

|ω|pdx + (p − 1)ν

∫
R2

|∇ω|2|ω|p−2dx

=
1

p

∫
R2

(v · ∇)|ω|pdx −
∫
R2

θx1ω|ω|p−2dx

= −1

p

∫
R2

div v |ω|pdx + (p − 1)

∫
R2

θωxx1 |ω|p−2dx

6
(p − 1)ν

2

∫
R2

|∇ω|2|ω|p−2dx +
(p − 1)

2ν

∫
R2

θ2|ω|p−2dx

6
(p − 1)ν

2

∫
R2

|∇ω|2|ω|p−2dx +
(p − 1)

2ν
‖θ‖2

Lp‖ω‖
p−2
Lp .

Carrying over the term (p−1)ν
2

∫
R2 |∇ω|2|ω|p−2dx to the left-hand

side, we find

1

p

d

dt
‖ω‖pLp +

(p − 1)ν

2

∫
R2

|∇ω|2|ω|p−2dx 6
(p − 1)

2ν
‖θ‖2

Lp‖ω‖
p−2
Lp .

(3.6)
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For p = 2, in particular, after integration over [0,T ] we obtain

‖ω(t)‖2
L2+ν

∫ T

0
‖∇ω(s)‖2

L2ds 6 2 ‖ω0‖2
L2+

2

ν
‖θ0‖2

L2 T , ∀t ∈ [0,T ].

Hence, we find that, by Hölder’s inequality,∫ T

0
‖∇ω(s)‖L2ds 6 C

√
T

(∫ T

0
‖∇ω(s)‖2

L2ds

)1/2

6 C ‖ω0‖L2

√
T + C ‖θ0‖L2 T , ∀t ∈ [0,T ].

(3.7)

On the other hand, from (3.6) , we have for p ∈ [2,∞)

‖ω(t)‖2
Lp 6 ‖ω0‖2

Lp+
(p − 1)

ν
‖θ0‖2

Lp T 6

(
‖ω0‖Lp +

√
p − 1√
ν
‖θ0‖Lp

√
T

)2

,

(3.8)
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and

‖ω(t)‖Lp 6 ‖ω0‖Lp+

√
p − 1√
ν
‖θ0‖Lp

√
T , ∀t ∈ [0,T ], p ∈ [2,∞).

(3.9)

Recall the Gagliardo-Nirenberg interpolation inequality in R2.

‖f ‖L∞ 6 C‖f ‖
p−2

2p−2

Lp ‖Df ‖
p

2p−2

Lp , f ∈W 1,p
(
R2
)
, p > 2. (3.10)

By this and the Calderon-Zygmund inequality combined with

estimates (3.5) and (3.9) for p ∈ (2,∞) we find

‖v(t)‖L∞ 6 C‖v(t)‖
p−2

2p−2

L2 ‖∇v(t)‖
p

2p−2

Lp 6 C‖v(t)‖
p−2

2p−2

L2 ‖ω(t)‖
p

2p−2

Lp

6 C (v0, θ0,T , ν, p) , ∀t ∈ [0,T ].
(3.11)
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W 2,p estimate for v

We take the derivative operation D = (∂x1 , ∂x2) on the equation of

ω, and then take L2 inner product with Dω|Dω|p−2, p > 2.

1

p

d

dt
‖Dω‖pLp + (p − 1)ν

∫
R2

∣∣D2ω
∣∣2 |Dω|p−2dx

=−
∫
R2

[D(v · ∇)ω]Dω|Dω|p−2dx −
∫
R2

Dθx1Dω|Dω|p−2dx

=(p − 1)

∫
R2

[(v · ∇)ω]D2ω|Dω|p−2dx + (p − 1)

∫
R2

θx1D
2ω|Dω|p−2dx

≤(p − 1)ν

4

∫
R2

∣∣D2ω
∣∣2 |Dω|p−2dx +

(p − 1)

ν

∫
R2

|v(x)|2|Dω|pdx

+
(p − 1)ν

4

∫
R2

∣∣D2ω
∣∣2 |Dω|p−2dx +

(p − 1)

ν

∫
R2

|∇θ|2|Dω|p−2dx ,
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We have

1

p

d

dt
‖Dω‖pLp +

(p − 1)ν

2

∫
R2

∣∣D2ω
∣∣2 |Dω|p−2dx

6
(p − 1)

ν

∫
R2

|v(x)|2|Dω|pdx +
(p − 1)

ν

∫
R2

|∇θ|2|Dω|p−2dx

6
(p − 1)

ν
‖v‖2

L∞‖Dω‖
p
Lp +

2(p − 1)

pν
‖∇θ‖pLp +

(p − 1)(p − 2)

pν
‖Dω‖pLp ,

where we used Young’s inequality, a2bp−2 6 2
pa

p + p−2
p bp for

p > 2. Recalling the estimate of ‖v(t)‖L∞ in (3.11), we find that

d

dt
‖Dω‖pLp 6 C‖Dω‖pLp + C‖∇θ‖pLp ∀t ∈ [0,T ], (3.12)

where C = C (v0, θ0,T , ν, p).
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Now taking ∇⊥ = (−∂x2 , ∂x1) to the second equation of (B1), we

obtain

∇⊥θt + (v · ∇)∇⊥θ = ∇⊥θ · ∇v .

Taking L2 inner product (2.12) with ∇⊥θ
∣∣∇⊥θ∣∣p−2

, we deduce,

after integration by part, that

1

p

d

dt

∫
R2

|∇θ|pdx = −1

p

∫
R2

(v · ∇)|∇θ|pdx +

∫
R2

(
∇⊥θ · ∇

)
v · ∇⊥θ|∇θ|p−2dx

6
∫
R2

|∇v‖∇θ|pdx .
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Hence, for p > 2 we have

d

dt
‖∇θ‖pLp

6 p‖∇v‖L∞‖∇θ‖pLp
6 C

(
1 + ‖∇v‖L2 +

∥∥D2v
∥∥
L2

) [
1 + log+

(∥∥D2v
∥∥
Lp

)]
‖∇θ‖pLp

6 C (1 + ‖ω‖L2 + ‖Dω‖L2)
[
1 + log+

(
‖Dω‖pLp + ‖∇θ‖pLp

)]
‖∇θ‖pLp ,

6 C (1 + ‖Dω‖L2)
[
1 + log+

(
‖Dω‖pLp + ‖∇θ‖pLp

)]
‖∇θ‖pLp .

(3.13)

where C = (v0, θ0,T , ν, p), and we used the following form of the

Brezis-Wainger inequality.
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(H. Brezis, S. Wainger, A note on limiting cases of Sobolev

embeddings and convolution inequalities, Comm. Partial

Differential Equations 5 (7) (1980) )

‖f ‖L∞ 6 (1 + ‖∇f ‖L2)
[
1 + log+ (‖∇f ‖Lp)

] 1
2 + C‖f ‖L2 . (3.14)

for f ∈ L2
(
R2
)
∩W 1,p

(
R2
)
, which holds for p > 2, Adding (3.12)

and (3.13) together, and setting X (t) = ‖∇θ‖pLp +‖Dω‖pLp , we find

that
dX

dt
6 C (1 + ‖Dω(t)‖L2)

(
1 + log+ X

)
X .

for all t ∈ [0,T ], where C = C (v0, θ0,T , ν, p).
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By Gronwall’s lemma we have

X (t) 6 X (0) exp

[
exp

{
CT + C

∫ T

0
‖Dω(s)‖L2ds

}]
, ∀t ∈ [0,T ],

which, combined with estimate (3.7), implies that for p > 2

‖Dω(t)‖Lp 6 C (v0, θ0,T , ν, p) , ∀t ∈ [0,T ]. (3.15)

By the Gagliardo-Nirenberg interpolation inequality (3.10) we have

‖∇v(t)‖L∞ 6 C‖∇v(t)‖
p−2

2p−2

L2

∥∥D2v(t)
∥∥ p

2p−2

Lp 6 C‖ω(t)‖
p−2

2p−2

L2 ‖Dω(t)‖
p

2p−2

Lp

6 C (v0, θ0,T , ν, p) ∀t ∈ [0,T ], p ∈ (2,∞],
(3.16)

where we used the estimates (3.8) and (3.15).
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Recall that the Lp estimate of ∇θ (3.13), we have

d

dt
‖∇θ‖Lp 6 ‖∇v‖L∞‖∇θ‖Lp ,

and by Gronwall’s lemma

‖∇θ(t)‖Lp 6 ‖∇θ0‖Lp exp

(∫ t

0
‖∇v(s)‖L∞ds

)
. (3.17)

Then, applying the following Lp interpolation inequality to (3.17):

‖f ‖Lp 6 ‖f ‖
2
p

L2‖f ‖
1− 2

p

L∞ , 2 6 p 6∞,

we obtain

‖∇θ(t)‖Lp 6 ‖∇θ0‖
2
p

L2‖∇θ0‖
1− 2

p

L∞ exp

(∫ T

0
‖∇v(s)‖L∞

)
,
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we obtain

‖∇θ(t)‖Lp 6 (1+‖∇θ0‖L2)(1+‖∇θ0‖L∞) exp

(∫ T

0
‖∇v(s)‖L∞

)
,

Passing first p →∞, we have

‖∇θ(t)‖L∞ 6 (1 + ‖∇θ0‖2
L2∪L∞) exp

(∫ T

0
‖∇v(s)‖L∞ds

)
6 C ∀t ∈ [0,T ],

where C = C (‖v0‖Hm , ‖θ0‖Hm ,T , ν), and we used the estimate of

‖∇v‖L∞(3.16).
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Partial dissipation case

Since we have the embedding, Hm
(
R2
)
↪→W 2,p

(
R2
)
, for all

m > 2 and p > 2 we attained estimate∫ T

0
‖∇θ(·, τ)‖L∞dτ <∞.

for any given T ∈ (0,∞) and for all v0, θ0 ∈ Hm
(
R2
)

with m > 2,

the proof is completed. �
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Proof of Theorem 3.3 (ν = 0, κ > 0)

Similar to the previous subsection, in order to prove the global

regularity of (B2), we have only to prove estimate L2
tL
∞
x of ∇θ for

the classical solution of (B2) for all T ∈ (0,∞).

First, we can easily get the L2 estimates for θ, v and ω,

1

2

d

dt
‖θ‖2

L2 + κ‖∇θ‖2
L2 = 0.

Integrating this over [0,T ] we have

1

2
‖θ(t)‖2

L2 +

∫ T

0
‖∇θ‖2

L2dt 6
1

2
‖θ0‖2

L2 ∀t ∈ [0,T ]. (3.18)
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For v ,
1

2

d

dt
‖v‖2

L2 =

∫
R2

θe2 · vdx 6 ‖θ‖L2‖v‖L2 .

Combining this with (3.18), we easily obtain

‖v(t)‖L2 6 ‖v0‖L2 +

∫ T

0
‖θ(s)‖L2ds = ‖v0‖L2 + T ‖θ0‖L2 ,

for all t ∈ [0,T ]. Taking the curl of the first equation of (B2), we

have

ωt + (v · ∇)ω = −θx1 . (3.19)

Taking L2 inner product with ω, and integrating by part, we deduce

1

2

d

dt
‖ω‖2

L2 6
∫
R2

|∇θ||ω|dx 6 ‖∇θ‖L2‖ω‖L2 ,

and
d

dt
‖ω‖L2 6 ‖∇θ‖L2 .
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Hence, using estimate (3.18), we derive

‖ω(t)‖L2 6
∫ T

0
‖∇θ‖L2dt + ‖ω0‖L2

6 T
1
2

(∫ T

0
‖∇θ‖2

L2dt

)1/2

+ ‖ω0‖L2

6
T

1
2

√
2
‖θ0‖L2 + ‖ω0‖L2 , ∀t ∈ [0,T ].
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W 1,p estimate for (θ, v)

Using operation ∇⊥ on the second equation of (B2), we have

∇⊥θ + (v · ∇)∇⊥θ =
(
∇⊥θ · ∇

)
v + κ∆∇⊥θ.

We now take scalar product in L2 by ∇⊥θ
∣∣∇⊥θ∣∣p−2

, p > 2;

1

p

d

dt
‖∇⊥θ‖pLp + (p − 1)κ

∫
R2

|D2θ|2|∇⊥θ|p−2dx

=

∫
R2

(∇⊥θ∇)v∇⊥θ|∇⊥θ|p−2dx

= −(p − 1)

∫
R2

v · (∇⊥θ · ∇)∇⊥θ|∇⊥θ|p−2dx

6 (p − 1)

∫
R2

|v‖∇⊥θ||D2θ||∇⊥θ|p−2dx

6
(p − 1)

2κ

∫
R2

|v |2|∇⊥θ|pdx +
(p − 1)κ

2

∫
R2

|D2θ|2|∇⊥θ|p−2dx .
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We carry over the second term to the left-hand side to have

d

dt
‖∇θ‖pLp +

p(p − 1)κ

2

∫
R2

∣∣D2θ
∣∣2 |∇θ|p−2dx

6
(p − 1)p

2κ
‖v‖2

L∞‖∇θ‖
p
Lp

6 C (1 + ‖v‖L2 + ‖∇v‖L2)2 (1 + log+
(
‖∇v‖pLp

))
‖∇θ‖pLp

6 C
(
1 + ‖v‖L2 + ‖ω‖2

L2

) [
1 + log+

(
‖ω‖pLp + ‖∇θ‖pLp

)]
‖∇θ‖pLp

6 C
[
1 + log+

(
‖ω‖pLp + ‖∇θ‖pLp

)]
‖∇θ‖pLp ,

(3.20)

where we applied the Brezis-Wainger inequality (3.14).
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On the other hand, taking L2 inner product (3.19) with ω|ω|p−2,

we obtain

1

p

d

dt
‖ω‖pLp +

1

p

∫
R2

(v · ∇)|ω|pdx = −
∫
R2

θx2ω|ω|p−2dx

6
∫
R2

|∇θ‖ω|p−1dx

6
1

p
‖∇θ‖pLp +

(p − 1)

p
‖ω‖pLp ,

(3.21)

Adding (3.21) to (3.20) , and setting X (t) = ‖∇θ(t)‖pLp + ‖ω‖pLp ,

we have

d

dt
X (t) 6 C (1 + logX (t))X (t), ∀t ∈ [0,T ].

The Gronwall lemma provides us with

X (t) 6 X (0)ee
CT
, ∀t ∈ [0,T ].

102 / 124



Theory on Well-posedness of Boussinesq Equations

Global well-posedness in 2-dimension

Partial dissipation case

Hence,

‖∇θ(t)‖pLp + ‖ω‖pLp 6 C (v0, θ0,T , p, κ) .

We also note that similar to (3.11), combined with above

inequalities implies that

‖v(t)‖L∞ 6 C‖v(t)‖
p−2

2p−2

L2 ‖∇v(t)‖
p

2p−2

Lp

6 C‖v(t)‖
p−2

2p−2

L2 ‖ω(t)‖
p

2p−2

Lp

6 C (v0, θ0,T , κ, p) , ∀t ∈ [0,T ].
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Partial dissipation case

W 2,p estimate for θ

Taking operation D2 on the second equation of (B2), and then

taking L2 inner product of this with D2θ
∣∣D2θ

∣∣p−2
, p > 2, we have

after integration by part

1

p

d

dt

∥∥D2θ
∥∥p
Lp + (p − 1)κ

∫
R2

∣∣D3θ
∣∣2 ∣∣D2θ

∣∣p−2
dx

=−
∫
R2

D2(v · ∇)θD2θ
∣∣D2θ

∣∣p−2
= (p − 1)

∫
R2

D[(v · ∇)θ]D3θ
∣∣D2θ

∣∣p−2
dx

=(p − 1)

∫
R2

Dv · DθD3θ
∣∣D2θ

∣∣p−2
dx + (p − 1)

∫
R2

[(v · ∇)Dθ]D3θ
∣∣D2θ

∣∣p−2
dx

6
(p − 1)

κ
‖∇θ‖2

L∞

∫
R2

|∇v |2
∣∣D2θ

∣∣p−2
dx +

(p − 1)κ

4

∫
R2

∣∣D3θ
∣∣2 ∣∣D2θ

∣∣p−2
dx

+
(p − 1)

κ
‖v‖2

L∞

∫
R2

∣∣D2θ
∣∣p dx +

(p − 1)κ

4

∫
R2

∣∣D3θ
∣∣2 ∣∣D2θ

∣∣p−2
dx .
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Partial dissipation case

Carrying over the terms, (p−1)κ
4

∫
R2

∣∣D3θ
∣∣2 ∣∣D2θ

∣∣p−2
dx to the

left-hand side, we derive

d

dt

∥∥D2θ
∥∥p
Lp
6 C‖∇θ‖2

L∞‖∇v‖2
Lp
∥∥D2θ

∥∥p−2

Lp
+ C‖v‖2

L∞
∥∥D2θ

∥∥p
Lp

6 C‖∇θ‖
2p−4
2p−2

Lp ‖ω‖
2
Lp
∥∥D2θ

∥∥p− 2p−4
2p−2

Lp + C‖v‖2
L∞
∥∥D2θ

∥∥p
Lp

6 C + C
∥∥D2θ

∥∥p
Lp
,

where we used the Gagliardo-Nirenberg interpolation inequality

(3.10)(note that p − 2p−4
2p−2 < p when p > 2).
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Thanks to Gronwall’s lemma, we have the estimate∥∥D2θ(t)
∥∥
Lp
6 C (v0, θ0,T , p, κ) , ∀t ∈ [0,T ], ∀p > 2.

Using the interpolation inequality (3.16) as previously, we obtain

that

‖∇θ(t)‖L∞ 6 C , ∀t ∈ [0,T ],

where C = C (‖v0‖W 2,p , ‖θ0‖W 2,p , p, κ). Similar to the proof of

Theorem 3.2, we have the embedding, Hm
(
R2
)
↪→W 2,p

(
R2
)
, for

all m > 2 and p > 2, and thus we attained estimate∫ T

0
‖∇θ(·, τ)‖L∞dτ <∞,

which complete the proof. �
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2D Boussinesq Equations with
Fractional Dissipation
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Fractional dissipation case

We consider the Cauchy problem of 2D fractional diffusion

Boussinesq equations for an incompressible fluid flows in R2

∂u

∂t
+ (u · ∇)u + ν(−∆)αu +∇P = θe2,

∂θ

∂t
+ (u · ∇)θ + κ(−∆)βθ = 0,

div u = 0, (t, x) ∈ R+ × R2,

u(x , 0) = u0(x), θ(x , 0) = θ0(x).

(3.22)

where α, β ∈ (0, 1), and (−∆)α is the pseudodifferential operator

defined via the Fourier transform

̂(−∆)αv(ξ) = |ξ|2αv̂(ξ).

In the following, for simplicity, we denote

Λ = (−∆)1/2.
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Theorem 3.4 (Global well-posedness; Xiaojing Xu 2010)

Let ν > 0, κ > 0 be fixed, α ∈
[

1
2 , 1
)
, β ∈

(
0, 1

2

]
, α + β = 1, and

div u0 = 0. Let m > 2 be an integer, and (u0, θ0) ∈ Hm
(
R2
)
.

Then, there exists a unique solution (u, θ) to the Cauchy problem
(3.22) such that

θ ∈ C ([0,∞);Hm(R2)) ∩ L2(0,∞;Hm+β(R2)),

and
u ∈ C ([0,∞);Hm(R2)) ∩ L2(0,∞;Hm+α(R2)).

Remark 1.1. For simplicity of the exposition, we formulate and

prove Theorem 3.4 in the subcritical case α + β = 1, only. One

can easily verify that, by arguments from this work, we can obtain

an analogous result for 1 ≤ α + β ≤ 2.

109 / 124



Theory on Well-posedness of Boussinesq Equations

Global well-posedness in 2-dimension

Fractional dissipation case

First of all, let us give a positive inequality in framework of Lp.

Lemma 3.1 (Positive Inequality)

Let 0 ≤ α ≤ 2. For every p > 1, we have∫
Rn

(Λαw) |w |p−2w dx ≥ C (p)

∫
Rn

(
Λ
α
2 |w |

p
2

)2
dx , (3.23)

for all w ∈ Lp (Rn) such that Λαw ∈ Lp (Rn), where

C (p) = 4(p−1)
p2 .

This inequality is well-known in the theory of sub-Markovian opera-

tors and its statement and the proof is given e.g. in (V.A. Liskevich,

Yu.A. Semenov, Some problems on Markov semigroups, Schrödinger

operators, Markov semigroups, wavelet analysis, operator algebras,

1996,). Observe that if α = 2, integrating by parts we obtain (3.23)

with the equality.
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Fractional dissipation case

Theorem 3.5 (Blow-up Criterion; Xiaojing Xu 2010)

Let α, β ∈ [0, 2], ν ≥ 0, κ ≥ 0. Suppose (u0, θ0) ∈ Hm(R2)
with m > 2 being an integer. Then, there exists a unique lo-
cal classical solution (u, θ) ∈ C ([0,T );Hm(R2)) of problem (3.22)
for some T = T (‖u0‖Hm(R2), ‖θ0‖Hm(R2)). Moreover, the solu-

tion remains in Hm
(
R2
)

up to a time T1 > T , namely (u, θ) ∈
C
(
[0,T1] ;Hm

(
R2
))

if and only if∫ T

0
‖∇θ(τ)‖L∞dτ <∞. (3.24)
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• In the inviscid case ν = 0 and κ = 0, Blow up Criterion was

proved in Chae1997. The arguments from that works with minor

changes also for problem (3.22) with the fractional diffusion, due

to inequality (3.23). By this reason, we skip details of the proof of

Theorem 3.5.

• In order to prove Theorem 3.4, it suffices to show that (3.24)

holds true for the smooth solutions (u, θ) to the Cauchy problem

(3.22).

• In the following section, we first show some a priori estimates for a

smooth solution (u, θ) ∈ C ([0,T );Hm(R2)) with m > 2 to (3.22),

then prove that (3.24) is valid.
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Fractional dissipation case

For simplicity, let ν = κ = 1.

• Estimate of ‖θ‖L∞(0,∞; Lp(R2)).

Let p ≥ 2. Multiplying the second equation in (3.22) by |θ|p−2θ

and integrating over R2, we deduce that

1

p

d

dt
‖θ(t)‖pLp +

∫ t

0
(−∆)βθ|θ|p−2θdx = 0,

where we have used the divergence free condition. This identity

together with Lemma 3.1, allows us to get

‖θ(t)‖pLp + C (p)

∫ t

0
‖Λβ|θ|

p
2 (τ)‖2

L2 dτ ≤ ‖θ0‖pLp .

In particular, when p = 2, we have

‖θ(t)‖2
L2 +

∫ t

0
‖Λβθ(τ)‖2

L2 dτ ≤ ‖θ0‖2
L2 . (3.25)
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• Estimate of ‖u‖L∞(0,∞;L2(R2)).

Multiplying the first equation of (3.22) by u, and integrating it

over R2, we have

1

2

d

dt
‖u(t)‖2

L2 +

∫
R2

u(−∆)αu dx =

∫
R2

θe2|u|2 dx −
∫
R2

(u · ∇)|u|2 dx

−
∫
R2

∇Pu dx .

This identity together with inequality (3.23) and the divergence

free condition, yield that

1

2

d

dt
‖u(t)‖2

L2 +

∫
R2

|Λαu|2 dx =

∫
R2

θe2u dx ≤ ‖θ(t)‖L2‖u(t)‖L2 .

By (3.25) and the Hölder inequality, we deduce that

‖u(t)‖2
L2 + 4

∫ t

0
‖Λαu(τ)‖2

L2 dτ ≤ 4 ‖θ0‖2
L2 T 2 + 2 ‖u0‖2

L2 .
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• Estimate of ‖ω(t)‖L∞(0,∞;L2(R2)).

Taking the operation curl on both sides of the first equation in

(3.22) and denoting ω = curl u = ∂x1u2 − ∂x2u1, we get

ωt + (−∆)αω + (u · ∇)ω = −θx1 . (3.26)

Multiplying the above equality by ω, integrating over R2, we find

1

2

d

dt
‖ω(t)‖2

L2 + ‖Λαω‖2
L2 =

1

2

∫
R2

(u · ∇)|ω|2 dx −
∫
R2

θx1ωdx

= −
∫
R2

θx1ωdx

≤ 1

2
‖Λαω‖2

L2 +
1

2
‖Λβθ‖2

L2

Here, in the last inequality, we have used the Parseval theorem and

the relation α + β = 1.
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Thus, we have

d

dt
‖ω(t)‖2

L2 + ‖Λαω‖2
L2 ≤ ‖Λβθ‖2

L2 .

By virtue of estimate (3.25), we deduce that

‖ω(t)‖2
L2 +

∫ t

0
‖Λαω(τ)‖2

L2 dτ ≤ ‖ω0‖2
L2 +

∫ t

0
‖Λβθ(τ)‖2

L2 dτ

≤ C (‖ω0‖L2 , ‖θ0‖L2 ,T ) .
(3.27)
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• Estimate of ‖ΛαDω‖L∞(0,∞;L2(R2))

We first compute the derivative ∇ = (∂x1 , ∂x2) of both sides of

(3.26), and then take L2 inner product with ∇ω. After integration

by parts, we obtain

1

2

d

dt
‖∇ω(t)‖2

L2 + ‖Λα∇ω‖2
L2 = −

∫
R2

[∇(u · ∇)ω]∇ωdx −
∫
R2

∇θx1∇ωdx

= −
∫
R2

[(∇u · ∇)ω]∇ωdx −
∫
R2

∇θx1∇ωdx

≤ ‖∇u‖
L

2
1−α
‖∇ω‖L2‖∇ω‖

L
2
α

+
1

2
‖Λα∇ω‖2

L2 +
1

2
‖Λβ∇θ‖2

L2

≤ ‖∇u‖ 2
1−α
‖∇ω‖

3α−1
α

L2 ‖Λα∇ω‖
1−α
α

L2 +
1

2
‖Λα∇ω‖2

L2 +
1

2
‖Λβ∇θ‖2

L2

≤ C‖∇u‖
2α

3α−1

L
2

1−α
‖∇ω‖2

L2 +
3

4
‖Λα∇ω‖2

L2 +
1

2
‖Λβ∇θ‖2

L2

(3.28)

where we have used the assumptions α ≥ 1
2 and div u = 0.
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Next, computing the derivative ∇⊥ = (−∂x2 , ∂x1) of the second

equation from (3.22), we easily show that

∇⊥θt +∇⊥[(u · ∇)θ] + (−∆)β∇⊥θ = 0.

We multiply the above equality by ∇⊥θ, and integrate it over R2.

Similar arguments as those in (3.28) lead to

1

2

d

dt
‖∇⊥θ(t)‖2

L2 + ‖Λβ∇⊥θ‖2
L2 ≤−

∫
R2

(u · ∇)∇⊥θ∇⊥θdx

−
∫
R2

∇⊥θ · ∇u∇⊥θdx

=‖∇u‖
L

2
1−α
‖∇⊥θ‖L2‖∇⊥θ‖

L
2
α

≤‖∇u‖
L

2
1−α
‖∇⊥θ‖L2‖Λβ∇⊥θ‖L2

≤1

2
‖∇u‖2

L
2

1−α
‖∇⊥θ‖2

L2 +
1

2
‖Λβ∇⊥θ‖2

L2 .

(3.29)
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Now, combining (3.28) with (3.29), one can show the function

X (t) = ‖∇ω(t)‖L2 + ‖∇⊥θ(t)‖L2 .

satisfies the inequality

d

dt
X (t) ≤ C (‖∇u‖

2α
3α−1

L
2

1−α
+ ‖∇u‖2

L
2

1−α
)X (t).

Therefore, Gronwall’s inequality and the embedding inequality and

estimate (3.27) yield that

X (t) ≤ CX (0) exp{
∫ t

0

(‖∇u(τ)‖
2α

3α−1

L
2

1−α
+ ‖∇u(τ)‖2

L
2

1−α
)dτ}

≤ CX (0) exp{
∫ t

0

(‖Λαω(τ)‖
2α

3α−1

L2 + ‖Λαω(τ)‖2
L2 )dτ}

≤ CX (0) exp

{
T

4α−2
3α−1

(∫ t

0

‖Λαω(τ)‖2
L2 dτ

) 2α
3α−1

+

∫ t

0

‖Λαω(τ)‖2
L2 dτ

}
≤ C (T , ‖u0‖H2 , ‖θ0‖H1 ).
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Finally, by virtue of estimate (3.28), we deduce

‖∇ω(t)‖2
L2 +

∫ t

0
‖Λα∇ω(τ)‖2

L2 dτ ≤ C (T , ‖u0‖H2 , ‖θ0‖H1) .
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• Estimate of ‖∇θ‖L∞(0,∞;L∞(R2))

Multiplying (3.9) by
∣∣∇⊥θ∣∣p−2∇⊥θ, and integrating it over R2, we

have

1

p

d

dt
‖∇⊥θ(t)‖pLp + C (p)‖∇⊥θ‖p

L
2p

1−α
≤
∫
R2

∇⊥θ · ∇u|∇⊥θ|p−2∇⊥θdx

≤ ‖∇u‖L∞‖∇⊥θ‖pLp .

Using Gronwall’s inequality and the obvious identity ‖∇Q‖Lp =

‖∇⊥Q‖Lp , we easily show that

‖∇θ(t)‖Lp ≤ C ‖∇θ0‖Lp exp

{∫ t

0
‖∇u(τ)‖L∞dτ

}
.
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This inequality together with the Gagliardo-Nirenberg inequality,

allows us to obtain∫ t

0

‖∇u(τ)‖L∞dτ ≤ C

∫ t

0

‖ω(τ)‖
α

1+α

L2

∥∥∥Λ1+αω(τ)
∥∥∥ 1

1+α

L2
dτ

≤ CT
2α+1
α+1

(∫ t

0

‖ω(τ)‖2
L2 dτ

) α
1+2α

+ C

∫ t

0

∥∥∥Λ1+αω(τ)
∥∥∥2

L2
dτ

≤ C
(
T , ‖u0‖H2 , ‖θ0‖H1

)
.

Using Sobolev embedding

‖f (x)‖LP(R2) ≤ C‖f (x)‖Hs(R2), s > 1,

where C is independent of p ∈ [2,∞], then we have

‖∇θ(t)‖Lp ≤ C ‖θ0‖Hm exp

{∫ t

0
‖∇u(τ)‖L∞dτ

}
≤ C for all t ∈ [0,T ],

where C is independent of p.
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Passing to the limit p →∞ in above inequality, we obtain

‖∇θ(t)‖L∞ ≤ C (T , ‖u0‖H2 , ‖θ0‖Hm) , ∀t ∈ [0,T ].

This implies that condition (3.24) holds true, and according to

Theorem 3.5, we obtain a unique solution of (3.22) such that

(u, θ) ∈ C
(
[0,∞);Hm

(
R2
))

. By (3.28), (3.29) and the itera-

tion process, we construct u ∈ L2
(
0,∞;Hm+α

(
R2
))

and θ ∈
L2
(
0,∞;Hm+β

(
R2
))

, and we complete the proof of Theorem 3.4.

�
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