国家天元数学中部中心Colloquium报告 | Prof. Jinchi Lv (University of Southern California)

发布时间: 2024-06-24 09:43

报告题目:SOFARI: High-Dimensional Manifold-Based Inference

报告时间:2024.06.28   10:00-11:00

报  告 人 :Prof. Jinchi Lv  University of Southern California

报告地点:理学院东北楼二楼报告厅(209)

Abstract:Multi-task learning is a widely used technique for harnessing information from various tasks. Recently, the sparse orthogonal factor regression (SOFAR) framework, based on the sparse singular value decomposition (SVD) within the coefficient matrix, was introduced for interpretable multi-task learning, enabling the discovery of meaningful latent feature-response association networks across different layers. However, conducting precise inference on the latent factor matrices has remained challenging due to the orthogonality constraints inherited from the sparse SVD constraints. In this paper, we suggest a novel approach called the high-dimensional manifold-based SOFAR inference (SOFARI), drawing on the Neyman near-orthogonality inference while incorporating the Stiefel manifold structure imposed by the SVD constraints. By leveraging the underlying Stiefel manifold structure that is crucial to enabling inference, SOFARI provides easy-to-use bias-corrected estimators for both latent left factor vectors and singular values, for which we show to enjoy the asymptotic mean-zero normal distributions with estimable variances. We introduce two SOFARI variants to handle strongly and weakly orthogonal latent factors, where the latter covers a broader range of applications. We illustrate the effectiveness of SOFARI and justify our theoretical results through simulation examples and a real data application in economic forecasting. This is a joint work with Yingying Fan, Zemin Zheng and Xin Zhou.