国家天元数学中部中心学术报告 | 张弘 副教授(国防科技大学)

发布时间: 2024-07-22 11:11

报告题目:Characterizing the stabilization size of a third-order one-parameter ETDRK scheme for the Swift--Hohenberg equation

报告时间:2024-07-25  15:00-16:00

报 告 人:张弘 副教授(国防科技大学)

腾讯会议ID:357-864-416

Abstract: The linear stabilization approach is well-known for facilitating the use of large time-step sizes while maintaining stability. However, traditional stabilization parameter selection relies on either the global Lipschitz nonlinearity or the  boundedness assumption of numerical solutions. Considering the Swift--Hohenberg equation without a global Lipschitz nonlinearity, we construct a one-parameter family of third-order exponential-time-differencing Runge-Kutta (ETDRK3) scheme with the Fourier pseudo-spectral discretization, and determine the free parameter and stabilization size required to preserve energy stability. Additionally, we establish an optimal rate convergence analysis and error estimate in the  norm using Sobolev embedding. The characterization of the stabilization parameter and error estimates represent significant advancements for a third-order accurate scheme applied to a gradient flow without the global Lipschitz continuity.

undefined